[1] ماکویی، احمد، سراجیان، امین، ترکستانی، سارا سادات. (1393). مروری بر مقالات مکان یابی تسهیلات با استفاده از تئوری بازیها، نشریه پژوهشهای مهندسی صنایع در سیستمهای تولید، 2(3): 1-19.
[2] Hotelling, H., "Stability in competition," in The collected economics articles of harold hotelling: Springer, 1990, pp. 50-63.
[3] Hotelling, H. (1929). Stability in competition, Economics, 39: 41-57.
[4] Smithies, A. (1941). Optimum location in spatial competition, Journal of Political Economy, 49(3): 423-439.
[5] Teitz, M. B. (1968). Locational strategies for competitive systems, Journal of Regional Science, 8(2): 135-148.
[6] Farahani, R. Z., Hekmatfar, M. (2009). Facility location: Concepts, models, algorithms and case studies, Springer.
[7] Hakimi, S.L. (1983). On locating new facilities in a competitive environment, European Journal of Operational Research, 12(1): 29-35.
[8] ReVelle, C. (1986). The maximum capture or “sphere of influence” location problem: Hotelling revisited on a network, Journal of Regional Science, 26(2): 343-358.
[9] Okabe, A., Suzuki, A. (1987). Stability of spatial competition for a large number of firms on a bounded two-dimensional space, Environment and Planning A, 19(8): 1067-1082.
[10] Drezner, Z. (1982). Competitive location strategies for two facilities, Regional Science and Urban Economics, 12: 485-493.
[11] Eiselt, H. A., Laporte, G. (1989). Competitive spatial models, European Journal of Operational Research, 39(3): 231-242.
[12] Friesz, T. L., Miller, T., Tobin, R. L. (1988). Competitive network faciuty location models: A survey, Papers in Regional Science, 65(1): 47-57.
[13] Eiselt, H. A., Laporte, G. (1997). Sequential location problems, European Journal of Operational Research, European Journal of Operational Research, 96(2): 217-231.
[14] Eiselt, H. A., Laporte, G., Thisse, J. F. (1993). Competitive location models: A framework and bibliography, Transportation Science, 27(1): 44-54.
[15] Serra, D., ReVelle, C. (1994). Competitive location in discrete space, Journal of economic literature classification.
[16] Plastria, F. (2001). Static competitive facility location: An overview of optimisation approaches, European Journal of Operational Research, 129(3): 461-470.
[17] Drezner, T. (2014). A review of competitive facility location in the plane, Logistics Research, 7(1): 114.
[18] Kress, D., Pesch, E. (2012). Sequential competitive location on networks, European Journal of Operational Research, 217(3): 483-499.
[19] Farahani, R. Z., Rezapour, S., Drezner, T., Fallah, S. (2014). Competitive supply chain network design: An overview of classifications, models, solution techniques and applications, Omega, 45: 92-118.
[20] Ashtiani, M. (2016). Competitive location: A state-of-art review, International Journal of Industrial Engineering Computations, 7(1): 1-18.
[21] Plastria, F. (2001). Static competitive facility location: An overview of optimisation approaches, European Journal of Operational Research, 129(3): 461-470.
[22] Drezner, T., Drezner, Z. (1998). Facility location in anticipation of future competition, Location Science, 6: 155-173.
[23] Aboolian, R., Sun, Y., Koehler, G. J. (2009). A location–allocation problem for a web services provider in a competitive market, European Journal of Operational Research, 194(1): 64-77.
[24] Fernández, J., Salhi, S., Boglárka, G. (2014). Location equilibria for a continuous competitive facility location problem under delivered pricing, Computers & Operations Research, 41: 185-195.
[25] Pelegrín, M., Pelegrín, B. (2017). Nash equilibria in location games on a network, OR Spectrum, 39(3): 775-791.
[26] Xiao, T., Yang, D. (2008). Price and service competition of supply chains with risk-averse retailers under demand uncertainty, International Journal of Production Economics, 14(1): 187-200.
[27] Zhang, D. (2006). A network economic model for supply chain versus supply chain competition, Omega, 34(3): 283-295.
[28] قهرمانی نهر، جاوید، قدرتنما، علی، ایزدبخش، حمیدرضا، توکلی مقدم, رضا. (1397). طراحی یک شبکه زنجیرهتأمین سبز چندهدفه چندمحصولی و چنددورهای با درنظر گرفتن تخفیف در شرایط عدم قطعیت، نشریه پژوهشهای مهندسی صنایع در سیستمهای تولید، 6(13): 119-137.
[29] Taylor, D., "Supply chains: A management guides," ed: Pearson Education, Boston, 2003.
[30] Basar, T., Olsder, G. J. (1999). Dynamic noncooperative game theory. Siam.
[31] Simchi-Levi, D., Wu, S. D., Shen, Z. J. M. (2004). Handbook of quantitative supply chain analysis: Modeling in the e-business era. Springer Science & Business Media.
[32] Drezner, Z. (1982). Competitive location strategies for two facilities, Regional Science and Urban Economics, 12(4): 485-493.
[33] Drezner, T., Drezner, Z., Salhi, S. (2002). Solving the multiple competitive facilities location problem, European Journal of Operational Research, 142(1): 138-151.
[34] Fernández, J., Pelegrın, B., Plastria, F., Tóth, B. (2007). Solving a huff-like competitive location and design model for profit maximization in the plane, European Journal of Operational Research, 179(3): 1274-1287.
[35] Bernstein, F., Federgruen, A. (2005). Decentralized supply chains with competing retailers under demand uncertainty, Management Science, 51(1): 18-29.
[36] Bernstein, F., Federgruen, A. (2004). A general equilibrium model for industries with price and service competition, Operations Research, 52(6): 868-886.
[37] Aboolian, R., Berman, O., Krass, D. (2007). Competitive facility location and design problem, European Journal of Operational Research, 182(1): 40-62.
[38] Aboolian, R., Berman, O., Krass, D. (2007). Competitive facility location model with concave demand, European Journal of Operational Research, 181(2): 598-619.
[39] Shiode, S., Drezner, Z. (2003). A competitive facility location problem on a tree network with stochastic weights, European Journal of Operational Research, 149(1): 47-52.
[40] Plastria, F., Vanhaverbeke, L. (2008). Discrete models for competitive location with foresight, Computers & Operations Research, 35(3): 683-700.
[41] Jiang, L., Wang, Y. (2010). Supplier competition in decentralized assembly systems with price-sensitive and uncertain demand, Manufacturing & Service Operations Management, 12(1): 93-101.
[42] Anderson, E. J., Bao, Y. (2010). Price competition with integrated and decentralized supply chains, European journal of Operational research, 200(1): 227-234.
[43] Drezner, T., Drezner, Z., Kalczynski, P. (2012). Strategic competitive location: Improving existing and establishing new facilities, Journal of the Operational Research Society, 63(12): 1720-1730.
[44] Drezner, T. (1994). Locating a single new facility among existing, unequally attractive facilities, Journal of Regional Science, 34(2): 237-252.
[45] Leonardi, G., Tadei, R. (1984). Random utility demand models and service location, Regional Science and Urban Economics, 14(3): 399-431.
[46] Drezner, T., Drezner, Z. (1996). Competitive facilities: Market share and location with random utility, Journal of regional science, 36(1): 1-15.
[47] Huff, D. L. (1964). Defining and estimating a trading area, Journal of marketing, 28(3): 34-38.
[48] Reilly, W. J. (1931). The law of retail gravitation. WJ Reilly.
[49] Nakanishi, M., Cooper, L. G. (1974). Parameter estimation for a multiplicative competitive interaction model: Least squares approach, Journal of marketing research, 11(3): 303-311.
[50] Drezner, T., Drezner, Z., Kalczynski, P. (2011). A cover-based competitive location model, Journal of the Operational Research Society, 62(1): 100-113.
[51] Pelegrín, B., Fernández, P., Pérez, M. D. G. (2015). On tie breaking in competitive location under binary customer behavior, Omega, 52: 156-167.
[52] Fernández, P., Pelegrín, B., Lančinskas, A., Žilinskas, J. (2017). New heuristic algorithms for discrete competitive location problems with binary and partially binary customer behavior, Computers & Operations Research, 79: 12-18.
[53] Gur, Y., Saban, D., Stier-Moses, N. E. (2018). The competitive facility location problem in a duopoly: Advances beyond trees, Operations Research, 66(4): 1058-1067.
[54] Kung, L.-C., Liao, W.-H. (2018). An approximation algorithm for a competitive facility location problem with network effects, European Journal of Operational Research, 267(1): 176-186.
[55] Zhang, Y. (2015). Designing a retail store network with strategic pricing in a competitive environment, International Journal of Production Economics, 159: 265-273.
[56] Rohaninejad, M., Navidi, H., Nouri, B. V., Kamranrad, R. (2017). A new approach to cooperative competition in facility location problems: Mathematical formulations and an approximation algorithm, Computers & Operations Research, 83: 45-53.
[57] Redondo, J. L., Fernández, J., Arrondo, A. G., García, I., Ortigosa, P. M. (2012). Fixed or variable demand? Does it matter when locating a facility?, Omega, 40(1): 9-20.
[58] Suárez-Vega, R., Santos-Peñate, D. R., Dorta-González, P. (2012). Location models and gis tools for retail site location, Applied Geography, 35(1-2): 12-22.
[59] Redondo, J. L., Fernández, J., Hervás, J. D. Á., Arrondo, A. G., Ortigosa, P. M. (2015). Approximating the pareto-front of a planar bi-objective competitive facility location and design problem, Computers & Operations Research, 62: 337-349.
[60] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: Nsga-ii, IEEE transactions on evolutionary computation, 6(2): 182-197.
[61] Ziztler, E., Laumanns, M., Thiele, L. (2002). Spea2: Improving the strength pareto evolutionary algorithm for multiobjective optimization, Evolutionary Methods for Design, Optimization, and Control, 2002: 95-100.
[62] Li, H., Zhang, Q. (2009). Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii, IEEE Transactions on evolutionary computation, 13(2): 284-302.
[63] Blanquero, R., Carrizosa, E., Boglárka, G., Nogales-Gómez, A. (2016). P-facility huff location problem on networks, European Journal of Operational Research, 255(1): 34-42.
[64] Grohmann, S., Urošević, D., Carrizosa, E., Mladenović, N. (2017). Solving multifacility huff location models on networks using metaheuristic and exact approaches, Computers & Operations Research, 78: 537-546.
[65] Ljubić, I., Moreno, E. (2018). Outer approximation and submodular cuts for maximum capture facility location problems with random utilities, European Journal of Operational Research, 266(1): 46-56.
[66] Wang, S. C., Lin, C. C., Chen, T. C., Hsiao, H. C. (2018). Multi-objective competitive location problem with distance-based attractiveness for two facilities, Computers & Electrical Engineering, 71: 237-250.
[67] Fernández, J., Boglárka, G., Redondo, J. L., Ortigosa, P. M. (2019). The probabilistic customer’s choice rule with a threshold attraction value: Effect on the location of competitive facilities in the plane, Computers & Operations Research, 101: 234-249.
[68] Dan, T., Marcotte, P. (2019). Competitive facility location with selfish users and queues, Operations Research, 67(2): 479-497.
[69] Kress, D., Pesch, E. (2012). (r| p)-centroid problems on networks with vertex and edge demand, Computers & Operations Research, 39(12): 2954-2967.
[70] Spoerhase, J., Wirth, H.-C. (2009). (r, p)-centroid problems on paths and trees, Theoretical Computer Science, 410(47-49): 5128-5137.
[71] Shiode, S., Yeh, K.-Y., Hsia, H.-C. (2012). Optimal location policy for three competitive facilities, Computers & Industrial Engineering, 62(3): 703-707.
[72] Beresnev, V. (2013). Branch-and-bound algorithm for a competitive facility location problem, Computers & Operations Research, 40(8): 2062-2070.
[73] Roboredo, M. C., Pessoa, A. A. (2013). A branch-and-cut algorithm for the discrete (r∣ p)-centroid problem, European Journal of Operational Research, 224(1): 101-109.
[74] Wang, X., Ouyang, Y. (2013). A continuum approximation approach to competitive facility location design under facility disruption risks, Transportation Research Part B: Methodological, 50: 90-103.
[75] Berglund, P. G., Kwon, C. (2014). Solving a location problem of a stackelberg firm competing with cournot-nash firms, Networks and Spatial Economics, 14(1): 117-132.
[76] Davydov, I., Kochetov, Y., Carrizosa, E. (2014). A local search heuristic for the (r| p)-centroid problem in the plane, Computers & Operations Research, 52: 334-340.
[77] Biesinger, B., Hu, B., Raidl, G. (2015). A hybrid genetic algorithm with solution archive for the discrete $$(r| p) $$(r| p)-centroid problem, Journal of Heuristics, 21: 391-431.
[78] Drezner, T., Drezner, Z., Kalczynski, P. (2015). A leader–follower model for discrete competitive facility location, Computers & Operations Research, 64: 51-59.
[79] MirHassani, S., Raeisi, S., Rahmani, A. (2015). Quantum binary particle swarm optimization-based algorithm for solving a class of bi-level competitive facility location problems, Optimization Methods and Software, 30(4): 756-768.
[80] Zhang, Y., Snyder, L. V., Ralphs, T. K., Xue, Z. (2016). The competitive facility location problem under disruption risks, Transportation Research Part E: Logistics and Transportation Review, 93: 453-473.
[81] Beresnev, V., Melnikov, A. (2018). Exact method for the capacitated competitive facility location problem, Computers & Operations Research, 95: 73-82.
[82] Gentile, J., Pessoa, A. A., Poss, M., Roboredo, M. C. (2018). Integer programming formulations for three sequential discrete competitive location problems with foresight, European Journal of Operational Research, 265(3): 872-881.
[83] Sasaki, M., Campbell, J. F., Krishnamoorthy, M., Ernst, A. T. (2014). A stackelberg hub arc location model for a competitive environment, Computers & operations research, 47: 27-41.
[84] Karakitsiou, A., Migdalas, A. (2017). Locating facilities in a competitive environment, Optimization Letters, 11(5): 929-945.
[85] Arbib, C., Pınar, M. Ç., Tonelli, M. (2020). Competitive location and pricing on a line with metric transportation costs, European Journal of Operational Research, 28(1): 188-200.
[86] Küçükaydın, H., Aras, N., Altınel, İ. K. (2012). A leader–follower game in competitive facility location, Computers & Operations Research, 39(2): 437-448.
[87] Ashtiani, M. G., Makui, A., Ramezanian, R. (2013). A robust model for a leader–follower competitive facility location problem in a discrete space, Applied Mathematical Modelling, 37(1-2): 62-71.
[88] Redondo, J. L., Arrondo, A., Fernández, J., García, I., Ortigosa, P. M. (2013). A two-level evolutionary algorithm for solving the facility location and design (1| 1)-centroid problem on the plane with variable demand, Journal of global optimization, 56(3): 983-1005.
[89] Boglárka, G., Kovács, K. (2016). Solving a huff-like stackelberg location problem on networks, 64(2): 233-247.
[90] Hendrix, E. M. (2016). On competition in a stackelberg location-design model with deterministic supplier choice, Annals of Operations Research, 246(1-2):19-30.
[91] Qi, M., Xia, M., Zhang, Y., Miao, L. (2017). Competitive facility location problem with foresight considering service distance limitations, Computers & Industrial Engineering, 112: 483-491.
[92] Nasiri, M. M., Mahmoodian, V., Rahbari, A., Farahmand, S. (2018). A modified genetic algorithm for the capacitated competitive facility location problem with the partial demand satisfaction, Computers & Industrial Engineering, 124: 435-448.
[93] Yu, W. (2019). A leader-follower model for discrete competitive facility location problem under the partially proportional rule with a threshold, PloS one, 14(12).
[94] Mahmutogullari, A. I., Kara, B. Y. (2016). Hub location under competition, European Journal of Operational Research, 250(1): 214-225.
[95] Godinho, P., Dias, J. (2013). Two-player simultaneous location game: Preferential rights and overbidding, European Journal of Operational Research, 229(3): 663-672.
[96] Bandyapadhyay, S., Banik, A., Das, S., Sarkar, H. (2015). Voronoi game on graphs, Theoretical Computer Science, 562: 270-282.
[97] Ruiz-Hernández, D., Elizalde, J., Delgado-Gómez, D. (2017). Cournot–Stackelberg games in competitive de location, Annals of Operations Research, 256(1): 149-170.
[98] Wang, S. C., Chen, T. C. (2017). Multi-objective competitive location problem with distance-based attractiveness and its best non-dominated solution, Applied Mathematical Modelling, 47: 785-795.
[99] Dilek, H., Karaer, Ö., Nadar, E. (2018). Retail location competition under carbon penalty, European Journal of Operational Research, 269(1): 146-158.
[100] Drezner, T., Drezner, Z., Suzuki, A. (2019). A cover based competitive facility location model with continuous demand, Naval Research Logistics (NRL), 66(7): 565-581.
[101] Konur, D., Geunes, J. (2012). Competitive multi-facility location games with non-identical firms and convex traffic congestion costs, Transportation Research Part E: Logistics and Transportation Review, 48(1): 373-385.
[102] Shan, W., Yan, Q., Chen, C., Zhang, M., Yao, B., Fu, X. (2019). Optimization of competitive facility location for chain stores, Annals of Operations Research, 273(1-2): 187-205.
[103] Saidani, N., Chu, F., Chen, H. (2012). Competitive facility location and design with reactions of competitors already in the market, European journal of operational research, 219(1): 9-17.
[104] Kress, D., Pesch, E. (2016). Competitive location and pricing on networks with random utilities, Networks and Spatial Economics, 16(3): 837-863.
[105] Shaikh, A., Salhi, S., Ndiaye, M. (2015). New maxcap related problems: Formulation and model solutions, Computers & Industrial Engineering, 85: 248-259.
[106] Farahani, R. Z., Rezapour, S., Drezner, T., Esfahani, A. M., Amiri-Aref, M. (2015). Locating and capacity planning for retailers of a new supply chain to compete on the plane, Journal of the Operational Research Society, 66(7): 1182-1205.
[107] Bilir, C., Ekici, S. O., Ulengin, F. (2017). An integrated multi-objective supply chain network and competitive facility location model, Computers & Industrial Engineering, 108: 136-148.
[108] Bai, Y., Ouyang, Y., Pang, J. S. (2012). Biofuel supply chain design under competitive agricultural land use and feedstock market equilibrium, Energy Economics, 34(5): 1623-1633.
[109] Fallah, H., Eskandari, H., Pishvaee, M. S. (2015). Competitive closed-loop supply chain network design under uncertainty, Journal of Manufacturing Systems, 37: 649-661.
[110] Amiri, A. S., Torabi, S. A., Ghodsi, R. (2018). An iterative approach for a bi-level competitive supply chain network design problem under foresight competition and variable coverage, Transportation Research Part E: Logistics and Transportation Review, 109: 99-114.
[111] Mitsos, A. (2010). Global solution of nonlinear mixed-integer bilevel programs, Journal of Global Optimization, 47(4): 557-582.
[112] علیزاده باسبان، نیما، طالعیزاده، عطاالله. (1397). کاهش نشر کربن در یک زنجیرهتأمین دو سطحی با درنظر گرفتن سطح کیفیت، سیاست بازگشت محصول و قیمتگذاری بازپرداخت: رویکرد تئوری بازیها, نشریه پژوهشهای مهندسی صنایع در سیستمهای تولید، 5: 229-249.
[113] Ghavamifar, A., Makui, A., Taleizadeh, A. A. (2018). Designing a resilient competitive supply chain network under disruption risks: A real-world application, Transportation Research Part E: Logistics and Transportation Review, 115: 87-109.
[114] Ghomi-Avili, M., Naeini, S. G. J., Tavakkoli-Moghaddam, R., Jabbarzadeh, A. (2018). A fuzzy pricing model for a green competitive closed-loop supply chain network design in the presence of disruptions, Journal of Cleaner Production, 188: 425-442.
[115] Moradinasab, N., Amin-Naseri, M., Behbahani, T. J., Jafarzadeh, H. (2018). Competition and cooperation between supply chains in multi-objective petroleum green supply chain: A game theoretic approach, Journal of Cleaner Production, 170: 818-841.
[116] Saghaeeian, A., Ramezanian, R. (2018). An efficient hybrid genetic algorithm for multi-product competitive supply chain network design with price-dependent demand, Applied Soft Computing, 71: 872-893.
[117] Setak, M., Feizizadeh, F., Tikani, H., Ardakani, E. S. (2019). A bi-level stochastic optimization model for reliable supply chain in competitive environments: Hybridizing exact method and genetic algorithm, Applied Mathematical Modelling, 75: 310-332.
[118]رنجبر، یحیی، صاحبی، هادی. (1399). قیمتگذاری و جمعآوری محصولات در زنجیرهتأمین حلقه بسته با دو کانال بازیافت رقابتی تحت رهبری مختلف، نشریه پژوهشهای مهندسی صنایع در سیستمهای تولید، 7: 377-393.
[119] Rezapour, S., Farahani, R. Z., Dullaert, W., De Borger, B. (2014). Designing a new supply chain for competition against an existing supply chain, Transportation Research Part E: Logistics and Transportation Review, 67: 124-140.
[120] Rezapour, S., Farahani, R. Z. (2014). Supply chain network design under oligopolistic price and service level competition with foresight, Computers & Industrial Engineering, 72: 129-142.
[121] Rezapour, S., Farahani, R. Z., Fahimnia, B., Govindan, K., Mansouri, Y. (2015). Competitive closed-loop supply chain network design with price-dependent demands, Journal of Cleaner Production, 93: 251-272.
[122] Fahimi, K., Seyedhosseini, S. M., Makui, A. (2017). Simultaneous competitive supply chain network design with continuous attractiveness variables, Computers & Industrial Engineering, 107: 235-250.
[123] Rezapour, S., Farahani, R. Z., Pourakbar, M. (2017). Resilient supply chain network design under competition: A case study, European Journal of Operational Research, 259: 1017-1035.
[124] Nobari, A., Kheirkhah, A., Esmaeili, M. (2019). Considering chain-to-chain competition on environmental and social concerns in a supply chain network design problem, International Journal of Management Science and Engineering Management, 14(1): 33-46.