مروری بر مقالات مکان‌یابی رقابتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد دانشکده مهندسی صنایع، دانشگاه علم و صنعت، تهران، ایران

2 استادیار دانشکده مهندسی صنایع، دانشگاه علم و صنعت، تهران، ایران

3 دانشجوی کارشناسی‌ارشد مهندسی صنایع، دانشگاه علم و صنعت، تهران، ایران

چکیده

مکان­یابی تسهیلات یکی از مهم­ترین تصمیمات استراتژیک برای هر سازمانی است. با توجه به گسترش دانش، سرعت یافتن اقتصاد جهانی و تغییر یافتن سلیقه مشتریان، درنظر داشتن رقابت و عکس­العمل رقیبان، یکی از مهم­ترین فاکتورهای موفقیت در جامعه جهانی امروز است. مشتریان تسهیلی را انتخاب می­کنند که مطلوبیت مورد انتظار خود را از آن تسهیل به‌دست آورند. همین عوامل باعث شده است که سازمان­ها برای رسیدن به اهدافشان، به مسأله مکان­یابی رقابتی تسهیلات و تعیین میزان مطلوبیت، توجه ویژه‌ای داشته باشند. در این مقاله، ابتدا به مطالعه و معرفی مکان­یابی رقابتی تسهیلات و طبقه­بندی مکان­یابی رقابتی در معیارها و دسته­بندی­های مهم پرداخته شده است؛ سپس بررسی و مروری جامع از مقالات ارائه شده در طی سال­های 2012 تا 2020 در حوزه مکان­یابی رقابتی تسهیلات انجام شده است. مهم­ترین تفاوت این مطالعه با مطالعات پیشین، دسته­بندی مقالات در دو دسته مقالات رقابتی مکان­یابی تسهیلات و مقالات رقابتی در سطح زنجیره‌تأمین می­باشد. به منظور بررسی دقیق­تر مطالعات نیز طبقه­بندی مقالات براساس نوع رقابت و نوع مشخصه­های رقابتی انجام شده است. با بررسی مطالعات می­توان گفت، گرچه توجه به زنجیره‌تأمین رقابتی در طی سال­های اخیر شدت بیشتری یافته است، اما همچنان تعداد مطالعات در این زمینه، کمتر از مقالات رقابت در یک سطح از زنجیره‌تأمین و مکان­یابی صرف تسهیلات می­باشد. همچنین می­توان گفت، به علت پیچیدگی محاسباتی بالای مسائل رقابتی، نویسندگان در مطالعات خود بیشتر به دنبال ارائه راه­حل­های ابتکاری و فراابتکاری مختلف جهت افزایش کارایی، سرعت و دقت حل انواع مسائل مکان­یابی رقابتی بوده­اند.

کلیدواژه‌ها


عنوان مقاله [English]

A review of competitive facility location

نویسندگان [English]

  • Ahmad Makui 1
  • rouzbeh ghousi 2
  • Zahra Asadi 3
1 Associated professor of Industrial Eng-Iran University of Science and Technology
2 Assistant Professor, Faculty of Industrial Engineering, University of Science and Technology, Tehran, Iran
3 M.A. Student of Industrial Engineering, University of Science and Technology, Tehran, Iran
چکیده [English]

Facility location is one of the most important strategic decisions for each organization. Regarding the development of knowledge, accelerating the global economy, and change in the customers’ taste, one of the key success factors in the current global society is to consider the competition and the reaction of competitors. Customers choose the facility that fulfills their concerning utility. These factors have led organizations to pay much attention to the problem of competitive facility location and utility determination to reach their goals. This study has firstly studied and introduced the competitive facility location and classified the competitive location as paramount criteria. Then a literature review (2012-2020) was conducted in the field of competitive facility location. The central difference of this study with previous ones is the classification of papers into two groups, namely, competitive facility location and competition at the supply chain level. Also, the classification of papers has been performed based on the competition type and type of competition characteristics to investigate the studies more accurately. Based on the studies, although further attention has been paid to the competitive supply chain in recent years, the number of studies in this field is still lower than that in the field of competition at a supply chain level and mere facility location. Furthermore, due to the high computational complexity of competitive problems, authors have sought heuristic and metaheuristic algorithms in their studies to enhance efficiency, speed, and accuracy of the solution of different types of competitive location problems.

کلیدواژه‌ها [English]

  • Competition
  • Competitive Facility Location
  • Supply Chain
[1]    ماکویی، احمد، سراجیان، امین، ترکستانی، سارا سادات. (1393). مروری بر مقالات مکان یابی تسهیلات با استفاده از تئوری بازی‌ها، نشریه پژوهش‌های مهندسی صنایع در سیستم‌های تولید، 2(3): 1-19.
[2]    Hotelling, H., "Stability in competition," in The collected economics articles of harold hotelling: Springer, 1990, pp. 50-63.
[3]    Hotelling, H. (1929). Stability in competition, Economics, 39: 41-57.
[4]    Smithies, A. (1941). Optimum location in spatial competition, Journal of Political Economy, 49(3): 423-439.
[5]    Teitz, M. B. (1968). Locational strategies for competitive systems, Journal of Regional Science, 8(2): 135-148.
[6]    Farahani, R. Z., Hekmatfar, M. (2009). Facility location: Concepts, models, algorithms and case studies, Springer.
[7]    Hakimi, S.L. (1983). On locating new facilities in a competitive environment, European Journal of Operational Research, 12(1): 29-35.
[8]    ReVelle, C. (1986). The maximum capture or “sphere of influence” location problem: Hotelling revisited on a network, Journal of Regional Science, 26(2): 343-358.
[9]    Okabe, A., Suzuki, A. (1987). Stability of spatial competition for a large number of firms on a bounded two-dimensional space, Environment and Planning A, 19(8): 1067-1082.
[10] Drezner, Z. (1982). Competitive location strategies for two facilities, Regional Science and Urban Economics, 12: 485-493.
[11] Eiselt, H. A., Laporte, G. (1989). Competitive spatial models, European Journal of Operational Research, 39(3): 231-242.
[12] Friesz, T. L., Miller, T., Tobin, R. L. (1988). Competitive network faciuty location models: A survey, Papers in Regional Science, 65(1): 47-57.
[13] Eiselt, H. A., Laporte, G. (1997). Sequential location problems, European Journal of Operational Research, European Journal of Operational Research, 96(2): 217-231.
[14] Eiselt, H. A., Laporte, G., Thisse, J. F. (1993). Competitive location models: A framework and bibliography, Transportation Science, 27(1): 44-54.
[15] Serra, D., ReVelle, C. (1994). Competitive location in discrete space, Journal of economic literature classification.
[16] Plastria, F. (2001). Static competitive facility location: An overview of optimisation approaches, European Journal of Operational Research, 129(3): 461-470.
[17] Drezner, T. (2014). A review of competitive facility location in the plane, Logistics Research, 7(1): 114.
[18] Kress, D., Pesch, E. (2012). Sequential competitive location on networks, European Journal of Operational Research, 217(3): 483-499.
[19] Farahani, R. Z., Rezapour, S., Drezner, T., Fallah, S. (2014). Competitive supply chain network design: An overview of classifications, models, solution techniques and applications, Omega, 45: 92-118.
[20] Ashtiani, M. (2016). Competitive location: A state-of-art review, International Journal of Industrial Engineering Computations, 7(1): 1-18.
[21] Plastria, F. (2001). Static competitive facility location: An overview of optimisation approaches, European Journal of Operational Research, 129(3): 461-470.
[22] Drezner, T., Drezner, Z. (1998). Facility location in anticipation of future competition, Location Science, 6: 155-173.
[23] Aboolian, R., Sun, Y., Koehler, G. J. (2009). A location–allocation problem for a web services provider in a competitive market, European Journal of Operational Research, 194(1): 64-77.
[24] Fernández, J., Salhi, S., Boglárka, G. (2014). Location equilibria for a continuous competitive facility location problem under delivered pricing, Computers & Operations Research, 41: 185-195.
[25] Pelegrín, M., Pelegrín, B. (2017). Nash equilibria in location games on a network, OR Spectrum, 39(3): 775-791.
[26] Xiao, T., Yang, D. (2008). Price and service competition of supply chains with risk-averse retailers under demand uncertainty, International Journal of Production Economics, 14(1): 187-200.
[27] Zhang, D. (2006). A network economic model for supply chain versus supply chain competition, Omega, 34(3): 283-295.
[28] قهرمانی نهر، جاوید، قدرت‌نما، علی، ایزدبخش، حمیدرضا، توکلی مقدم, رضا. (1397). طراحی یک شبکه زنجیره‌تأمین سبز چندهدفه چندمحصولی و چنددوره‌ای با درنظر گرفتن تخفیف در شرایط عدم قطعیت، نشریه پژوهش‌های مهندسی صنایع در سیستم‌های تولید، 6(13): 119-137.
[29] Taylor, D., "Supply chains: A management guides," ed: Pearson Education, Boston, 2003.
[30] Basar, T., Olsder, G. J. (1999). Dynamic noncooperative game theory. Siam.
[31] Simchi-Levi, D., Wu, S. D., Shen, Z. J. M. (2004). Handbook of quantitative supply chain analysis: Modeling in the e-business era. Springer Science & Business Media.
[32] Drezner, Z. (1982). Competitive location strategies for two facilities, Regional Science and Urban Economics, 12(4): 485-493.
[33] Drezner, T., Drezner, Z., Salhi, S. (2002). Solving the multiple competitive facilities location problem, European Journal of Operational Research, 142(1): 138-151.
[34] Fernández, J., Pelegrın, B., Plastria, F., Tóth, B. (2007). Solving a huff-like competitive location and design model for profit maximization in the plane, European Journal of Operational Research, 179(3): 1274-1287.    
[35] Bernstein, F., Federgruen, A. (2005). Decentralized supply chains with competing retailers under demand uncertainty, Management Science, 51(1): 18-29.
[36] Bernstein, F., Federgruen, A. (2004). A general equilibrium model for industries with price and service competition, Operations Research, 52(6): 868-886.
[37] Aboolian, R., Berman, O., Krass, D. (2007). Competitive facility location and design problem, European Journal of Operational Research, 182(1): 40-62.
[38] Aboolian, R., Berman, O., Krass, D. (2007). Competitive facility location model with concave demand, European Journal of Operational Research, 181(2): 598-619.
[39] Shiode, S., Drezner, Z. (2003). A competitive facility location problem on a tree network with stochastic weights, European Journal of Operational Research, 149(1): 47-52.
[40] Plastria, F., Vanhaverbeke, L. (2008). Discrete models for competitive location with foresight, Computers & Operations Research, 35(3): 683-700.
[41] Jiang, L., Wang, Y. (2010). Supplier competition in decentralized assembly systems with price-sensitive and uncertain demand, Manufacturing & Service Operations Management, 12(1): 93-101.
[42] Anderson, E. J., Bao, Y. (2010). Price competition with integrated and decentralized supply chains, European journal of Operational research, 200(1): 227-234.
[43] Drezner, T., Drezner, Z., Kalczynski, P. (2012). Strategic competitive location: Improving existing and establishing new facilities, Journal of the Operational Research Society, 63(12): 1720-1730.
[44] Drezner, T. (1994). Locating a single new facility among existing, unequally attractive facilities, Journal of Regional Science, 34(2): 237-252.
[45] Leonardi, G., Tadei, R. (1984). Random utility demand models and service location, Regional Science and Urban Economics, 14(3): 399-431.
[46] Drezner, T., Drezner, Z. (1996). Competitive facilities: Market share and location with random utility, Journal of regional science, 36(1): 1-15.
[47] Huff, D. L. (1964). Defining and estimating a trading area, Journal of marketing, 28(3): 34-38.
[48] Reilly, W. J. (1931). The law of retail gravitation. WJ Reilly.
[49] Nakanishi, M., Cooper, L. G. (1974). Parameter estimation for a multiplicative competitive interaction model: Least squares approach, Journal of marketing research, 11(3): 303-311.
[50] Drezner, T., Drezner, Z., Kalczynski, P. (2011). A cover-based competitive location model, Journal of the Operational Research Society, 62(1): 100-113.
[51] Pelegrín, B., Fernández, P., Pérez, M. D. G. (2015). On tie breaking in competitive location under binary customer behavior, Omega, 52: 156-167.
[52] Fernández, P., Pelegrín, B., Lančinskas, A., Žilinskas, J. (2017). New heuristic algorithms for discrete competitive location problems with binary and partially binary customer behavior, Computers & Operations Research, 79: 12-18.
[53] Gur, Y., Saban, D., Stier-Moses, N. E. (2018). The competitive facility location problem in a duopoly: Advances beyond trees, Operations Research, 66(4): 1058-1067.
[54] Kung, L.-C., Liao, W.-H. (2018). An approximation algorithm for a competitive facility location problem with network effects, European Journal of Operational Research, 267(1): 176-186.
[55] Zhang, Y. (2015). Designing a retail store network with strategic pricing in a competitive environment, International Journal of Production Economics, 159: 265-273.
[56] Rohaninejad, M., Navidi, H., Nouri, B. V., Kamranrad, R. (2017). A new approach to cooperative competition in facility location problems: Mathematical formulations and an approximation algorithm, Computers & Operations Research, 83: 45-53.
[57] Redondo, J. L., Fernández, J., Arrondo, A. G., García, I., Ortigosa, P. M. (2012). Fixed or variable demand? Does it matter when locating a facility?, Omega, 40(1): 9-20.
[58] Suárez-Vega, R., Santos-Peñate, D. R., Dorta-González, P. (2012). Location models and gis tools for retail site location, Applied Geography, 35(1-2): 12-22.
[59] Redondo, J. L., Fernández, J., Hervás, J. D. Á., Arrondo, A. G., Ortigosa, P. M. (2015). Approximating the pareto-front of a planar bi-objective competitive facility location and design problem, Computers & Operations Research, 62: 337-349.
[60] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: Nsga-ii, IEEE transactions on evolutionary computation, 6(2): 182-197.
[61] Ziztler, E., Laumanns, M., Thiele, L. (2002). Spea2: Improving the strength pareto evolutionary algorithm for multiobjective optimization, Evolutionary Methods for Design, Optimization, and Control, 2002: 95-100.
[62] Li, H., Zhang, Q. (2009). Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii, IEEE Transactions on evolutionary computation, 13(2): 284-302.
[63] Blanquero, R., Carrizosa, E., Boglárka, G., Nogales-Gómez, A. (2016). P-facility huff location problem on networks, European Journal of Operational Research, 255(1): 34-42.
[64] Grohmann, S., Urošević, D., Carrizosa, E., Mladenović, N. (2017). Solving multifacility huff location models on networks using metaheuristic and exact approaches, Computers & Operations Research, 78: 537-546.
[65] Ljubić, I., Moreno, E. (2018). Outer approximation and submodular cuts for maximum capture facility location problems with random utilities, European Journal of Operational Research, 266(1): 46-56.
[66] Wang, S. C., Lin, C. C., Chen, T. C., Hsiao, H. C. (2018). Multi-objective competitive location problem with distance-based attractiveness for two facilities, Computers & Electrical Engineering, 71: 237-250.
[67] Fernández, J., Boglárka, G., Redondo, J. L., Ortigosa, P. M. (2019). The probabilistic customer’s choice rule with a threshold attraction value: Effect on the location of competitive facilities in the plane, Computers & Operations Research, 101: 234-249.
[68] Dan, T., Marcotte, P. (2019). Competitive facility location with selfish users and queues, Operations Research, 67(2): 479-497.
[69] Kress, D., Pesch, E. (2012). (r| p)-centroid problems on networks with vertex and edge demand, Computers & Operations Research, 39(12): 2954-2967.
[70] Spoerhase, J., Wirth, H.-C. (2009). (r, p)-centroid problems on paths and trees, Theoretical Computer Science, 410(47-49): 5128-5137.
[71] Shiode, S., Yeh, K.-Y., Hsia, H.-C. (2012). Optimal location policy for three competitive facilities, Computers & Industrial Engineering, 62(3): 703-707.
[72] Beresnev, V. (2013). Branch-and-bound algorithm for a competitive facility location problem, Computers & Operations Research, 40(8): 2062-2070.
[73] Roboredo, M. C., Pessoa, A. A. (2013). A branch-and-cut algorithm for the discrete (r∣ p)-centroid problem, European Journal of Operational Research, 224(1): 101-109.
[74] Wang, X., Ouyang, Y. (2013). A continuum approximation approach to competitive facility location design under facility disruption risks, Transportation Research Part B: Methodological, 50: 90-103.
[75] Berglund, P. G., Kwon, C. (2014). Solving a location problem of a stackelberg firm competing with cournot-nash firms, Networks and Spatial Economics, 14(1): 117-132.
[76] Davydov, I., Kochetov, Y., Carrizosa, E. (2014). A local search heuristic for the (r| p)-centroid problem in the plane, Computers & Operations Research, 52: 334-340.
[77] Biesinger, B., Hu, B., Raidl, G. (2015). A hybrid genetic algorithm with solution archive for the discrete $$(r| p) $$(r| p)-centroid problem, Journal of Heuristics, 21: 391-431.
[78] Drezner, T., Drezner, Z., Kalczynski, P. (2015). A leader–follower model for discrete competitive facility location, Computers & Operations Research, 64: 51-59.
[79] MirHassani, S., Raeisi, S., Rahmani, A. (2015). Quantum binary particle swarm optimization-based algorithm for solving a class of bi-level competitive facility location problems, Optimization Methods and Software, 30(4): 756-768.
[80] Zhang, Y., Snyder, L. V., Ralphs, T. K., Xue, Z. (2016). The competitive facility location problem under disruption risks, Transportation Research Part E: Logistics and Transportation Review, 93: 453-473.
[81] Beresnev, V., Melnikov, A. (2018). Exact method for the capacitated competitive facility location problem, Computers & Operations Research, 95: 73-82.
[82] Gentile, J., Pessoa, A. A., Poss, M., Roboredo, M. C. (2018). Integer programming formulations for three sequential discrete competitive location problems with foresight, European Journal of Operational Research, 265(3): 872-881.
[83] Sasaki, M., Campbell, J. F., Krishnamoorthy, M., Ernst, A. T. (2014). A stackelberg hub arc location model for a competitive environment, Computers & operations research, 47: 27-41.
[84] Karakitsiou, A., Migdalas, A. (2017). Locating facilities in a competitive environment, Optimization Letters, 11(5): 929-945.
[85] Arbib, C., Pınar, M. Ç., Tonelli, M. (2020). Competitive location and pricing on a line with metric transportation costs, European Journal of Operational Research, 28(1): 188-200.
[86] Küçükaydın, H., Aras, N., Altınel, İ. K. (2012). A leader–follower game in competitive facility location, Computers & Operations Research, 39(2): 437-448.
[87] Ashtiani, M. G., Makui, A., Ramezanian, R. (2013). A robust model for a leader–follower competitive facility location problem in a discrete space, Applied Mathematical Modelling, 37(1-2): 62-71.
[88] Redondo, J. L., Arrondo, A., Fernández, J., García, I., Ortigosa, P. M. (2013). A two-level evolutionary algorithm for solving the facility location and design (1| 1)-centroid problem on the plane with variable demand, Journal of global optimization, 56(3): 983-1005.
[89] Boglárka, G., Kovács, K. (2016). Solving a huff-like stackelberg location problem on networks, 64(2): 233-247.
[90] Hendrix, E. M. (2016). On competition in a stackelberg location-design model with deterministic supplier choice, Annals of Operations Research, 246(1-2):19-30.
[91] Qi, M., Xia, M., Zhang, Y., Miao, L. (2017). Competitive facility location problem with foresight considering service distance limitations, Computers & Industrial Engineering, 112: 483-491.
[92] Nasiri, M. M., Mahmoodian, V., Rahbari, A., Farahmand, S. (2018). A modified genetic algorithm for the capacitated competitive facility location problem with the partial demand satisfaction, Computers & Industrial Engineering, 124: 435-448.
[93] Yu, W. (2019). A leader-follower model for discrete competitive facility location problem under the partially proportional rule with a threshold, PloS one, 14(12).
[94] Mahmutogullari, A. I., Kara, B. Y. (2016). Hub location under competition, European Journal of Operational Research, 250(1): 214-225.
[95] Godinho, P., Dias, J. (2013). Two-player simultaneous location game: Preferential rights and overbidding, European Journal of Operational Research, 229(3): 663-672.
[96] Bandyapadhyay, S., Banik, A., Das, S., Sarkar, H. (2015). Voronoi game on graphs, Theoretical Computer Science, 562: 270-282.
[97] Ruiz-Hernández, D., Elizalde, J., Delgado-Gómez, D. (2017). Cournot–Stackelberg games in competitive de location, Annals of Operations Research, 256(1): 149-170.
[98] Wang, S. C., Chen, T. C. (2017). Multi-objective competitive location problem with distance-based attractiveness and its best non-dominated solution, Applied Mathematical Modelling, 47: 785-795.
[99] Dilek, H., Karaer, Ö., Nadar, E. (2018). Retail location competition under carbon penalty, European Journal of Operational Research, 269(1): 146-158.
[100] Drezner, T., Drezner, Z., Suzuki, A. (2019). A cover based competitive facility location model with continuous demand, Naval Research Logistics (NRL), 66(7): 565-581.
[101] Konur, D., Geunes, J. (2012). Competitive multi-facility location games with non-identical firms and convex traffic congestion costs, Transportation Research Part E: Logistics and Transportation Review, 48(1): 373-385.
[102] Shan, W., Yan, Q., Chen, C., Zhang, M., Yao, B., Fu, X. (2019). Optimization of competitive facility location for chain stores, Annals of Operations Research, 273(1-2): 187-205.
[103] Saidani, N., Chu, F., Chen, H. (2012). Competitive facility location and design with reactions of competitors already in the market, European journal of operational research, 219(1): 9-17.
[104] Kress, D., Pesch, E. (2016). Competitive location and pricing on networks with random utilities, Networks and Spatial Economics, 16(3): 837-863.
[105] Shaikh, A., Salhi, S., Ndiaye, M. (2015). New maxcap related problems: Formulation and model solutions, Computers & Industrial Engineering, 85: 248-259.
[106] Farahani, R. Z., Rezapour, S., Drezner, T., Esfahani, A. M., Amiri-Aref, M. (2015). Locating and capacity planning for retailers of a new supply chain to compete on the plane, Journal of the Operational Research Society, 66(7): 1182-1205.
[107]  Bilir, C., Ekici, S. O., Ulengin, F. (2017). An integrated multi-objective supply chain network and competitive facility location model, Computers & Industrial Engineering, 108: 136-148.
[108] Bai, Y., Ouyang, Y., Pang, J. S. (2012). Biofuel supply chain design under competitive agricultural land use and feedstock market equilibrium, Energy Economics, 34(5): 1623-1633.
[109] Fallah, H., Eskandari, H., Pishvaee, M. S. (2015). Competitive closed-loop supply chain network design under uncertainty, Journal of Manufacturing Systems, 37: 649-661.
[110] Amiri, A. S., Torabi, S. A., Ghodsi, R. (2018). An iterative approach for a bi-level competitive supply chain network design problem under foresight competition and variable coverage, Transportation Research Part E: Logistics and Transportation Review, 109: 99-114.
[111] Mitsos, A. (2010). Global solution of nonlinear mixed-integer bilevel programs, Journal of Global Optimization, 47(4): 557-582.
[112]             علیزاده باسبان، نیما، طالعی‌زاده، عطاالله. (1397). کاهش نشر کربن در یک زنجیره‌تأمین دو سطحی با درنظر گرفتن سطح کیفیت، سیاست بازگشت محصول و قیمت‌گذاری بازپرداخت: رویکرد تئوری بازی‌ها, نشریه پژوهش‌های مهندسی صنایع در سیستم‌های تولید، 5: 229-249.
[113] Ghavamifar, A., Makui, A., Taleizadeh, A. A. (2018). Designing a resilient competitive supply chain network under disruption risks: A real-world application, Transportation Research Part E: Logistics and Transportation Review, 115: 87-109.
[114] Ghomi-Avili, M., Naeini, S. G. J., Tavakkoli-Moghaddam, R., Jabbarzadeh, A. (2018). A fuzzy pricing model for a green competitive closed-loop supply chain network design in the presence of disruptions, Journal of Cleaner Production, 188: 425-442.
[115] Moradinasab, N., Amin-Naseri, M., Behbahani, T. J., Jafarzadeh, H. (2018). Competition and cooperation between supply chains in multi-objective petroleum green supply chain: A game theoretic approach, Journal of Cleaner Production, 170: 818-841.
[116] Saghaeeian, A., Ramezanian, R. (2018). An efficient hybrid genetic algorithm for multi-product competitive supply chain network design with price-dependent demand, Applied Soft Computing, 71: 872-893.
[117] Setak, M., Feizizadeh, F., Tikani, H., Ardakani, E. S. (2019). A bi-level stochastic optimization model for reliable supply chain in competitive environments: Hybridizing exact method and genetic algorithm, Applied Mathematical Modelling, 75: 310-332.
[118]رنجبر، یحیی، صاحبی، هادی. (1399). قیمت‌گذاری و جمع‌آوری محصولات در زنجیره‌تأمین حلقه بسته با دو کانال بازیافت رقابتی تحت رهبری مختلف، نشریه پژوهش‌های مهندسی صنایع در سیستم‌های تولید، 7: 377-393.
[119] Rezapour, S., Farahani, R. Z., Dullaert, W., De Borger, B. (2014). Designing a new supply chain for competition against an existing supply chain, Transportation Research Part E: Logistics and Transportation Review, 67: 124-140.
[120] Rezapour, S., Farahani, R. Z. (2014). Supply chain network design under oligopolistic price and service level competition with foresight, Computers & Industrial Engineering, 72: 129-142.
[121] Rezapour, S., Farahani, R. Z., Fahimnia, B., Govindan, K., Mansouri, Y. (2015). Competitive closed-loop supply chain network design with price-dependent demands, Journal of Cleaner Production, 93: 251-272.
[122] Fahimi, K., Seyedhosseini, S. M., Makui, A. (2017). Simultaneous competitive supply chain network design with continuous attractiveness variables, Computers & Industrial Engineering, 107: 235-250.
[123] Rezapour, S., Farahani, R. Z., Pourakbar, M. (2017). Resilient supply chain network design under competition: A case study, European Journal of Operational Research, 259: 1017-1035.
[124] Nobari, A., Kheirkhah, A., Esmaeili, M. (2019). Considering chain-to-chain competition on environmental and social concerns in a supply chain network design problem, International Journal of Management Science and Engineering Management, 14(1): 33-46.