طراحی شبکه زنجیره تأمین با بهره گیری از فناوری رایانش ابری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیئت علمی دانشگاه آزاد غرب

2 گروه مهندسی صنایع، دانشکده فنی مهندسی، واحد تهران غرب، دانشگاه آزاد اسلامی، تهران، ایران؛

چکیده

فناوری­های نوین برای خلق فرصت‌های ارزشمند در زنجیره‌­تأمین به رویکرد جدیدی نیاز دارند تا نه‌ تنها جریان فیزیکی کالاها و خدمات، بلکه انبوه اطلاعات و داده‌های مالی را یکپارچه ‌سازند. استفاده از فناوری روز و تحلیل داده­‌های موجود و ارائه گزارشات مربوطه به مدیران ارشد سازمان در زمان مناسب موجب می­‌شود تا آن‌ها با توجه به تغییرات بازار بتوانند تصمیمات مناسب و هوشمندانه‌­ای را اتخاذ نمایند و در جهت اهداف استراتژیک سازمان گام‌­های مؤثرتری بردارند. امروزه، انعطاف­‌پذیری سازمان­ها با توجه به تغییر در نیازهای مشتریان، بسیار حائز اهمیت است. از سوی دیگر، میزان و زمان سفارش­‌گذاری مناسب تأثیر بسزایی در کاهش هزینه‌­های سربار داشته و چابکی سازمان را افزایش می‌دهد. فناوری ابر به‌عنوان یک قابلیت کلیدی در دنیای امروز می‌تواند تأثیر شگرفی بر انتقال داده‌ها در مدل‌های مختلف عملکردی زنجیره­‌تأمین و همچنین تحلیل‌ بخش‌های مختلف کسب‌وکار داشته باشد. به همین منظور در این تحقیق به‌ دنبال بررسی استفاده از فناوری ابری جهت ارزشمندتر کردن فرایندهای زنجیره‌تأمین هستیم و این موارد را به‌ صورت مدل ریاضی ارائه نمودیم. مدل ریاضی به‌ صورت دقیق حل شده و در ابعاد بزرگ مسأله با استفاده از رویکردهای بهینه‌­سازی هوشمند مورد تجزیه‌ و تحلیل قرار گرفته است. نتایج نشان داد با پیاده ­سازی شبکه زنجیره ­تأمین پیشنهادی، حمل‌ونقل و هزینه‌های ناشی از آن ب ه‌صورت چشم­گیری کاهش و درآمد شرکت افزایش می­‌یابد که این روند شرکت­ها را به‌ سمت زنجیره ­تأمین سبز نیز سوق می­‌دهد.  همچنین، با حذف واسطه­‌ها، کالا با قیمت و کیفیت مناسب­تری به مشتری نهایی تحویل می­‌شود که این موضوع منجر به جلب هر چه بیشتر رضایت مشتری می­‌گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Cloud Computing-based Supply Chain Network Design

نویسندگان [English]

  • Vahid Hajipour 1
  • Mohammad Rahbarjou 2
1 Assistant Professor/ WTIAU
2 Department of Engineering, College of Industrial Engineering, West Tehran Branch ,Islamic Azad University,Tehran,Iran
چکیده [English]

New technologies require new approaches to create valuable opportunities in the supply chain to integrate not only the physical progress of goods and services but also massive information and financial data. Using the technology of the day and analyzing the existing data and presenting the reports to the managers of the organization at the right time enable them to make suitable and intelligently decisions due to market fluctuations. It causes to move their effective steps toward the organizations strategic goals. Nowadays, the flexibility of the organizations is very important due to the changing customer’s needs. On the other hand, the suitable time and amount of ordering has a significant impact to reduce the costs and to increase the organization's agility. Cloud technology, as a key feature in today's world, can contribute on data transfer in various performance models of the supply chain and also in analyzing various business parts. For this purpose, this research fallows to explore the use of cloud technology to value the supply chain processes and presents the problem as a mathematical model. The mathematical model has been thoroughly solved and analyzed in the large dimensions of the problem using the best-developed optimization algorithm. The results showed that with the implementation of the proposed supply chain network, transportation and costs reduce significantly and increase company revenue, which lead the companies to the green supply chain. Moreover, by removing intermediaries, the goods are delivered to the final customer with a better price and quality, which result in more customer satisfactions.

کلیدواژه‌ها [English]

  • Supply chain network design
  • Cloud computing
  • Mathematical modelling
[1]       Last, First. (2018). Battle-for-the-cloud.pdf. Retrieved April 09, 2018, from https://www.strategyand.pwc.com/media/file/Battle-for-the-cloud.pdf
[2]       Al-zu'bi, H. (2010). Applying Electronic Supply Chain Management Using Multi-Agent System: A Managerial Perspective. Int. Arab J. e-Technol., 1(3): 106-113.
[3]       Chopra, S., Meindl, P. (2007). Supply chain management. Strategy, planning & operation. In Das summa summarum des management (pp. 265-275). Gabler.
[4]       Mell, P, Grance, T., (2009). The NIST definition of cloud computing. National institute of standards and technology, 53(6): p.50.
[5]       Ciovică, L., Cristescu, M.P., Fraţilă, L.A., (2014). Cloud Based Business Processes Orchestration. Procedia Economics and Finance, 16, 592-596.
[6]       Chung, L., Hill, T., Legunsen, O., Sun, Z., Dsouza, A., Supakkul, S., (2013). A goal-oriented simulation approach for obtaining good private cloud-based system architectures. Journal of Systems and Software, 86(9): 2242-2262.
[7]       Using This Site. (2018) Protecting information in the cloud | McKinsey & Company. Retrieved April 09, 2018, from https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/protecting-information-in-the-cloud
[8]       Akkermans, H.A., Bogerd, P., Yücesan, E., van Wassenhove, L.N., (2003). The impact of ERP on supply chain management: Exploratory findings from a European Delphi study. European Journal of Operational Research, 146(2): 284-301.
[9]       Swafford, P.M., Ghosh, S., Murthy, N., (2008). Achieving supply chain agility through IT integration and flexibility. International Journal of Production Economics, 116(2):288-290.
[10]   Liu, H., Ke, W., Wei, K.K., Gu, J., Chen, H., (2010). The role of institutional pressures and organizational culture in the firm's intention to adopt internet-enabled supply chain management systems. Journal of Operations Management, 28(5): 372-384.
[11]   Maestrini, V., Luzzini, D., Maccarrone, P., Caniato, F., (2017). Supply chain performance measurement systems: A systematic review and research agenda. International Journal of Production Economics, 183: 299-315.
[12]   Benlian, A., Hess, T., (2011). Opportunities and risks of software-as-a-service: Findings from a survey of IT executives. Decision support systems, 52(1): 232-246.
[13]   Durowoju, O. A., Chan, H. K., Wang, X., (2011). The impact of security and scalability of cloud service on supply chain performance. Journal of Electronic Commerce Research, 12(4): 243.
[14]   Jun, C., Wei, M.Y., (2011). The research of supply chain information collaboration based on cloud computing. Procedia Environmental Sciences, 10: 875-880.
[15]   Bibi, S., Katsaros, D., Bozanis, P. (2012). Business application acquisition: on-premise or SaaS-based solutions? IEEE software, 29(3): 93-86.
[16]   Hoberg, P., Wollersheim, J., Krcmar, H., (2012). The business perspective on cloud computing-a literature review of research on cloud computing
[17]   Aivazidou, E., Antoniou, A., Arvanitopoulos, K., Toka, A., (2012). Using cloud computing in supply chain management: Third-party logistics on the cloud. Paper presented at the 2nd International Conference on Supply Chains.
[18]   Huang, B., Li, C., Yin, C., Zhao, X. (2013). Cloud manufacturing service platform for small-and medium-sized enterprises. The International Journal of Advanced Manufacturing Technology, 65(9-12): 1261-1272.
[19]   Tiwari, A., Jain, M. (2012). Analysis of Supply Chain Management in Cloud Computing. International Journal of Innovative Technology and Exploring Engineering, 3(5): 152-155.
[20]   Bala, H., (2013). The effects of IT-enabled supply chain process change on job and process outcomes: A longitudinal investigation. Journal of Operations Management, 31(6): 450-473.
[21]   Brender, N., Markov, I., (2013). Risk perception and risk management in cloud computing: Results from a case study of Swiss companies. International journal of information management, 33(5): 726-733.
[22]   Blome, C., Schoenherr, T., Eckstein, D., (2014). The impact of knowledge transfer and complexity on supply chain flexibility: A knowledge-based view. International Journal of Production Economics, 307-316, 147.
[23]   Bhoir, H., Principal, R., (2014). Cloud Computing For Supply Chain Management. International Journal of Innovations in Engineering Research and Technology, 1(2): 1-9
[24]   Yan, J., Xin, S., Liu, Q., Xu, W., Yang, L., Fan, L., . . . Wang, Q., (2014). Intelligent supply chain integration and management based on cloud of things. International Journal of Distributed Sensor Networks, .
[25]   Truong, D., (2014). Cloud-based solutions for supply chain management: A post-adoption study. ASBBS Proceedings, 21(1):697.
[26]   Cho, V., Chan, A., (2015). An integrative framework of comparing SaaS adoption for core and non-core business operations: An empirical study on Hong Kong industries. Information systems frontiers, 17(3): 644-629.
[27]   Shankar, R., (2015). Cloud computing technology: Reducing carbon footprint in beef supply chain. International Journal of Production Economics, 164: 462-471.
[28]   Garrison, G., Wakefield, R. L., Kim, S., (2015). The effects of IT capabilities and delivery model on cloud computing success and firm performance for cloud supported processes and operations. International journal of information management, 35(4): 377-393.
[29]   Karkonasasi, K., Baharudin, A.S., Esparham, B., Mousavi, S.A., (2016). Adoption of Cloud Computing among Enterprises in Malaysia. Indian Journal of Science and Technology, 48(9).
[30]   Helo, P., Shamsuzzoha, A., Sandhu, M. (2016).  Cloud-based Virtual Supply Chain. International Conference on Industrial Engineering and Operations Management Detroit, Michigan, USA, September, 23-25..
[31]   Jede, A., Teuteberg, F., (2016). Towards cloud-based supply chain processes: Designing a reference model and elements of a research agenda. The International Journal of Logistics Management, 27(2): 438-462.
[32]   Xing, K., Qian, W., Zaman, A.U., (2016). Development of a cloud-based platform for footprint assessment in green supply chain management. Journal of Cleaner Production, 139: 191-203.
[33]   Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., & Ghalsasi, A., (2011). Cloud computing—The business perspective. Decision support systems, 51(1): 176-189.
[34]   Zahiri, B., Jula, P., Tavakkoli-Moghaddam, R. (2018). Design of a pharmaceutical supply chain network under uncertainty considering perishability and substitutability of products. Information Sciences, 423: 257-283.
[35]   Büyüközkan, G., Göçer, F., (2018). Digital Supply Chain: Literature review and a proposed framework for future research. Computers in Industry, 97: 157-177.
[36]   Li, Z., Chen, C., Wang, K., (2011). Cloud computing for agent-based urban transportation systems. IEEE Intelligent Systems, 26(1): 73-79.
[37]   Kochan, C.G., Nowicki, D.R., Sauser, B., Randall, W. S. (2018). Impact of cloud-based information sharing on hospital supply chain performance: A system dynamics framework. International Journal of Production Economics, 195,: 168-185
[38]   Subramanian, N., Abdulrahman, M.D., Zhou, X. (2014). Integration of logistics and cloud computing service providers: Cost and green benefits in the Chinese context. Transportation Research Part E: Logistics and Transportation Review, 70, 86-98.
[39]   Cristea, D.S., Moga, L.M., Neculita, M., Prentkovskis, O., Md Nor, K., Mardani, A. (2017). Operational shipping intelligence through distributed cloud computing. Journal of Business Economics and Management, 18(4): 695-725.
[40]   Li, X., Wang, Y., Chen, X., (2012). Cold chain logistics system based on cloud computing. Concurrency and Computation: Practice and Experience, 24(17): 2138-2150.
[41]   Yeniay, O., Ankare, B., (2005). Penalty function methods for constrained optimization with genetic algorithms. Mathematical and Computational Application, 10: 45–56.
[42]   Min, H. (2015). Genetic algorithm for supply chain modelling: basic concepts and applications. International Journal of Services and Operations Management, 22(2): 143-164.
[43]   Danalakshmi, C.S., Kumar, G.M., (2010). Optimization of supply chain network using genetic algorithm. J. Manuf. Eng, 3: 30-5.