مدل‌سازی و تحلیل استراتژی‌های قیمت‌گذاری و نوآوری در توسعه محصول با مشتریان ناهمگن و سیاست‌های دوگانه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد گروه تولید، گروه مهندسی سیستم، دانشکدۀ مهندسی صنایع و سیستم‏های مدیریت، دانشگاه صنعتی امیرکبیر، تهران‌، ایران

2 دانشیار گروه مهندسی سیستم، دانشکدۀ مهندسی صنایع و سیستم‏های مدیریت، دانشگاه صنعتی امیرکبیر، تهران‌، ایران

3 استادیار گروه لجستیک و زنجیره تأمین، دانشکدۀ مهندسی صنایع، دانشگاه تهران، تهران‌، ایران

10.22084/ier.2025.30980.2205

چکیده

مدیریت زنجیره‌تأمین شامل تصمیمات استراتژیک، تاکتیکی و عملیاتی است که قیمت‌گذاری درآن نقش کلیدی دارد. با پیشرفت فناوری، شرکت‌ها محصولات جدید را سریع‌تر عرضه و مصرف‌کنندگان بااستفاده‌از فناوری اطلاعات، قیمت‌ها و عملکرد محصولات را پیش‌بینی می‌کنند. این مقاله یک مدل ریاضی تصمیم‌گیری بهینه درزمینه قیمت‌گذاری و نوآوری محصول در دو دوره، درحضور مشتریان ناهمگن، ارائه می‌دهد. تعیین میزان نوآوری محصول جدید براساس هزینه تحقیق و توسعه، ارائه تابع مطلوبیت برای مشتریان و حضور همزمان مشتریان نزدیک‌بین و استراتژیک، نوآوری‌های این پژوهش است. مسأله برای تعیین قیمت‌های محصول دوره اول و دوم، تخفیف مبادله کالا، قیمت کاهش‌یافته محصول قدیمی و افزایش نوآوری محصول دوره جدید در چهارچوب یک بازی پویا مدل‌سازی شده و برای یافتن مقادیر بهینه دو سیاست قیمت‌گذاری و حل مدل غیرخطی، الگوریتم مبتنی‌بر شاخه‌وکران فضایی توسعه داده شده است. نتایج عددی مبتنی‌بر تحلیل حساسیت پارامترهای کلیدی نشان می‌دهند که پارامترهایی چون میزان نوآوری، رفتار استراتژیک مشتریان و سیاست قیمت‌گذاری، نقش مهمی در سودآوری شرکت دارند. یافته‌ها نشان می‌دهد که: (1) قیمت‌گذاری ازپیش تعیین‌شده در 70% موارد سود بیشتری دارد، (2) در شرایط خاص مانند هزینه بالای توسعه محصول یا درصد زیاد مشتریان استراتژیک، قیمت‌گذاری پویا برتری دارد، و (3) برنامه مبادله زمانی مؤثرتر است که ارزش بازیافت محصول افزایش یابد. همچنین، تأثیر مشتریان استراتژیک و نزدیک‌بین و برنامه مبادله کالا تحلیل شده است. این یافته‌ها می‌تواند به مدیران در انتخاب استراتژی قیمت‌گذاری مناسب براساس ترکیب مشتریان و شرایط بازار کمک کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling and Analysis of Pricing and Innovation Strategies in Product Development with Heterogeneous Customers and Dual Policies

نویسندگان [English]

  • Shayan Sotouneh 1
  • Mohsen Sheikh Sajadieh 2
  • Matineh Ziari 3
1 M.Sc. Student, Department of Department of System Engineering, Faculity of of Industrial Engineering and Management Systems, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
2 Associate Professor, Department of System Engineering, Faculity of of Industrial Engineering and Management Systems, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
3 Assistant Professor, Department of Industrial Engineering & Management Systems, Faculity of Industrial Engineering, University of Tehran, Tehran, Iran
چکیده [English]

Pricing is a critical element in supply chain decisions across strategic, tactical, and operational levels. Rapid technological innovation accelerates product introductions while empowering consumers to anticipate prices and performance. This paper develops a two-period mathematical model for optimizing pricing and product innovation decisions in markets with heterogeneous customers (myopic and strategic). Key contributions include: (1) determining optimal new product innovation level considering R&D costs, (2) introducing a comprehensive, behaviorally-informed customer utility function, and (3) jointly analyzing the impact of both customer types. Modeled within a dynamic game framework, the solution determines optimal first- and second-period prices, trade-in discounts, reduced prices for old products, and new product innovation levels. To solve this nonlinear problem, we develop a customized algorithm based on the spatial branch and bound method. Sensitivity analyses reveal that innovation level, strategic customer behavior, and pricing policy significantly impact profitability. Key findings indicate: (1) pre-determined pricing generates higher profits in 70% of scenarios, (2) dynamic pricing becomes superior under high product development costs or high proportions of strategic customers, and (3) trade-in program effectiveness increases with higher recycled product value. The analysis quantifies the distinct impacts of strategic customers, myopic customers, and trade-in programs. These insights provide managers with actionable guidance for selecting pricing strategies based on specific customer compositions and market conditions.

کلیدواژه‌ها [English]

  • Pricing Strategy
  • Heterogeneous Customers
  • Incremental Innovation
  • Trade-In Program
  • حسین، د.، طراحی مدل دوهدفه شبکه زنجیره‌تأمین گوشت با درنظر گرفتن قابلیت ارتجاعی تحت شرایط عدم قطعیت. https://doi.org/10.22084/ier.2024.29296.2166
  • Hou, H., F. Wu, and X. Huang, Dynamic pricing strategy for content products considering consumer fairness concerns and strategic behavior. Industrial Management & Data Systems, 2024. 124(11): p. 3164-3196. https://doi.org/10.1108/IMDS-09-2023-0669
  • Ziari, M., A data-driven pricing model for distribution systems considering competition. Advances in Industrial Engineering, 2024. 58(1): p. 179-195. https://doi.org/10.22059/aie.2024.370998.1885
  • Parilina, E., F. Yao, and G. Zaccour, Dynamic pricing and advertising in a supply chain with environment-and fairness-concerned consumers. Central European Journal of Operations Research, 2025: p. 1-26. https://doi.org/10.1007/s10100-025-00972-1
  • Maleki MinBashRazgah, M. and M.A. Siahsarani Kojouri, A Predictive Model of Behavior of Purchasers of Iranian Brands by Applying the Genetic Algorithm in Optimization of Decision Tree: Electric Appliance Industry. Quarterly Journal of Brand Management, 2017. 4(1): p. 107-134. https://doi.org/10.22051/bmr.2018.15279.1309
  • Yu, D., M. Wan, and C. Luo, Dynamic pricing and dualchannel choice in the presence of strategic consumers. Managerial and Decision Economics, 2022. 43(6): p. 2392-2408. https://doi.org/10.1002/mde.3533
  • Wang, C., et al., The impact of international electronic commerce on export trade: evidence from China. Journal of Theoretical and Applied Electronic Commerce Research, 2021. 16(7): p. 2579-2593. https://doi.org/10.3390/jtaer16070142
  • Lange, F. and R. Schlosser, Dynamic Pricing with Price-Anticipating Customers. Preprint, 2024. https://doi.org/10.1016/j.orp.2025.100337
  • Lim, W.S. and C.S. Tang, Optimal product rollover strategies. European journal of operational research, 2006. 174(2): p. 905-922. https://doi.org/10.1016/j.ejor.2005.04.031
  • Koca, E., G.C. Souza, and C.T. Druehl, Managing product rollovers. Decision Sciences, 2010. 41(2): p. 403-423. https://doi.org/10.1111/j.1540-5915.2010.00270.x
  • ناصری، آتنا، و یزدیان، برنامه‌ریزی تولید یک سیستم ترکیبی تولید/بازتولید پویا با درنظر گرفتن تصمیمات قیمت‌گذاری و وارانتی در شرایط رقابت بین محصولات نو و بازتولیدی. نشریه پژوهش‌های مهندسی صنایع در سیستم‌های تولید, 2024. 11(23): 21-37. https://doi.org/10.22084/ier.2024.5563
  • Liang, C., M. Çakanyıldırım, and S.P. Sethi, Analysis of product rollover strategies in the presence of strategic customers. Management Science, 2014. 60(4): p. 1033-1056. http://dx.doi.org/10.1287/mnsc.2013.1803
  • Xiao, Y., Choosing the right exchange-old-for-new programs for durable goods with a rollover. European Journal of Operational Research, 2017. 259(2): p. 512-526. https://doi.org/10.1016/j.ejor.2016.11.002
  • Liang, C., M. Çakanyildirim, and S.P. Sethi, Can strategic customer behavior speed up product innovation? Production and Operations Management, 2018. 27(8): p. 1516-1533. https://doi.org/10.1111/poms.12880
  • Koca, E., T. Valletti, and W. Wiesemann, Designing digital rollovers: Managing perceived obsolescence through release times. Production and Operations Management, 2021. 30(10): p. 3698-3712. https://doi.org/10.1111/poms.13459
  • Schwarz, J.A. and B. Tan, Optimal sales and production rollover strategies under capacity constraints. European Journal of Operational Research, 2021. 294(2): p. 507-524. https://doi.org/10.1016/j.ejor.2021.01.040
  • Nazmy, J., R.B. Taha, and A.K. El-Kharbotly, Modeling and Optimization of Supply Chain Product Rollover Strategies. Port-Said Engineering Research Journal, 2022. 26(4): p. 56-71. https://doi.org/10.21608/pserj.2022.163701.1195
  • Han, X., Y. Zhou, and X. Liu, Optimal production strategies of competitive firms considering product innovation. RAIRO-Operations Research, 2022. 56(3): p. 1335-1352. https://doi.org/10.1051/ro/2022057
  • Yang, G., B. He, and K. Yuan, Optimal product rollover strategies for successive-generation products: The role of the trade-in program and product characteristics. Computers & Industrial Engineering, 2023. 179: p. 109163. https://doi.org/10.1016/j.cie.2023.109163
  • Aviv, Y. and A. Pazgal, Optimal pricing of seasonal products in the presence of forward-looking consumers. Manufacturing & service operations management, 2008. 10(3): p. 339-359. https://doi.org/10.1287/msom.1070.0183
  • Mersereau, A.J. and D. Zhang, Markdown pricing with unknown fraction of strategic customers. Manufacturing & Service Operations Management, 2012. 14(3): p. 355-370. https://doi.org/10.1287/msom.1120.0376
  • Correa, J., R. Montoya, and C. Thraves, Contingent preannounced pricing policies with strategic consumers. Operations Research, 2016. 64(1): p. 251-272. https://doi.org/10.1287/opre.2015.1452
  • Aflaki, A., P. Feldman, and R. Swinney, Becoming strategic: The endogenous determination of time preferences and its implications for multiperiod pricing. 2018, Working paper, University of Pittsburgh, Pittsburgh. https://doi.org/10.1287/opre.2015.1452
  • Dong, J. and D.D. Wu, Two-period pricing and quick response with strategic customers. International Journal of Production Economics, 2019. 215: p. 165-173. https://doi.org/10.1016/j.ijpe.2017.06.007
  • Hu, S., Z.-J. Ma, and J.-B. Sheu, Optimal prices and trade-in rebates for successive-generation products with strategic consumers and limited trade-in duration. Transportation Research Part E: Logistics and Transportation Review, 2019. 124: p. 92-107. https://doi.org/10.1016/j.tre.2019.02.004
  • Ye, T. and H. Yang, Price and quality management with strategic consumers: Whether to introduce a high or low product variant. Applied Mathematics and Computation, 2020. 386: p. 125541. https://doi.org/10.1016/j.amc.2020.125541
  • Correa, J.R., D. Pizarro, and G. Vulcano. The value of observability in dynamic pricing. in Proceedings of the 21st ACM Conference on Economics and Computation. 2020. https://doi.org/10.1145/3391403.3399489
  • Golrezaei, N., H. Nazerzadeh, and R. Randhawa, Dynamic pricing for heterogeneous time-sensitive customers. Manufacturing & Service Operations Management, 2020. 22(3): p. 562-581. https://dx.doi.org/10.2139/ssrn.2992112
  • Zhang, Q., et al., Strategic pricing under quality signaling and imitation behaviors in supply chains. Transportation Research Part E: Logistics and Transportation Review, 2020. 142: p. 102072. https://doi.org/10.1016/j.tre.2020.102072
  • Ju, Y., Dynamic Pricing Strategy for TwoGeneration Products under Different Tradein Subsidy Strategies. Mathematical Problems in Engineering, 2022. 2022(1): p. 5677490. https://doi.org/10.1155/2022/5677490
  • شایسته، ع.ن.، ا. محمدعلی، و ر.ب. مرتضی, یک رویکرد نظریه بازی برای قیمت‌گذاری در زنجیره‌تأمین دوکاناله با درنظر گرفتن خدمات لجستیک. https://doi.org/10.22084/ier.2024.29059.2164
  • Sheng, J., et al., Dynamic pricing vs. pre-announced pricing in supply chain with consumer heterogeneity. Electronic Commerce Research and Applications, 2023. 62: p. 101311. https://doi.org/10.1016/j.elerap.2023.101311
  • Liu, J., X. Zhai, and L. Chen, Optimal pricing strategy under trade-in program in the presence of strategic consumers. Omega, 2019. 84: p. 1-17. https://doi.org/10.1016/j.omega.2018.03.005
  • Ziari, M., et al., A review on competitive pricing in supply chain management problems: models, classification, and applications. International Transactions in Operational Research, 2022. 29(4): 2082-2115. https://doi.org/10.1111/itor.13082
  • Kremer, M., B. Mantin, and A. Ovchinnikov, Dynamic pricing in the presence of myopic and strategic consumers: Theory and experiment. Production and Operations Management, 2017. 26(1): p. 116-133. https://doi.org/10.1111/poms.12607
  • Liu, G., Z. Guan, and H. Wang, Dynamic pricing under cost reduction in the presence of myopic and strategic consumers. Discrete Dynamics in Nature and Society, 2019. 2019(1): p. 3272875.

https://doi.org/10.1155/2019/3272875 Wang, X., P. Ma, and Y. Zhang, Pricing and inventory strategies under quick response with strategic and myopic consumers. International Transactions in Operational Research, 2020. 27(3): p. 1729-1750. https://doi.org/10.1111/itor.12453

  • Vafaeinejad, K. and M.S. Sajadieh, Trade-in price and base warranty length: A heuristic algorithm for concurrent optimization. Computers & Industrial Engineering, 2022. 171: p. 108504. https://doi.org/10.1016/j.cie.2022.108504
  • Zhao, N., Q. Wang, and J. Wu, The reference effect on a retailer’s selling strategy with limited initial inventory level and strategic consumer behavior. Computers & Industrial Engineering, 2022. 169: p. 108260. https://doi.org/10.1016/j.cie.2022.108260
  • Yuan, X., Z. Ma, and X. Zhang, Dynamic pricing for the successive-generation products in the presence of strategic customers and limited trade-in duration. Kybernetes, 2022. 52(11): p. 5329-5352. https://doi.org/10.1108/K-02-2022-0237
  • Hu, S. and Y. Tang, Impact of product sharing and heterogeneous consumers on manufacturers offering trade-in programs. Omega, 2024. 122: p. 102949. https://doi.org/10.1016/j.omega.2023.10294