شبیه‌سازی نوسانات طبیعی نمونه‌ها و الگوهای غیرطبیعی پایه در نمودار کنترل S2

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی‌ارشد مهندسی صنایع، گروه مهندسی صنایع، دانشکدۀ مهندسی صنایع، واحد نجف‌آباد، دانشگاه آزاد اسلامی، نجف‌آباد، ایران

2 استاد گروه مهندسی صنایع، دانشکدۀ مهندسی صنایع، دانشگاه صنعتی امیرکبیر، تهران، ایران

10.22084/ier.2025.29453.2169

چکیده

طی چند دهه گذشته، مقالات گوناگونی پیرامون شناسایی و تحلیل الگوهای غیرطبیعی پایه در نمودارهای کنترل فرآیند به‌چاپ رسیده‌اند. مقالات منتشرشده، به‌طور رایج، برای سنجش، ارزیابی و نیز آموزش مدل‌های پیشنهادی خود از نمونه‌های شبیه‌سازی‌شده استفاده کرده‌اند. اکثر این مقالات رفتارهای نمونه‌های متوالی را در نمودار کنترل میانگین یا نمودار کنترل مشاهدات انفرادی بررسی نموده‌اند و نسبت‌به تفسیر هم‌زمان الگوها در نمودار کنترل تغییرپذیری و نمودار کنترل میانگین بی‌توجه بوده‌اند. ازسوی‌دیگر، معدود پژوهش‌های پایش‌گر توامان الگوها در نمودارهای کنترل تغییرپذیری و میانگین، برای شبیه‌سازی نمونه‌ها در نمودار کنترل تغییرپذیری، روش قابل تعمیمی که مبتنی‌بر استدلال‌های آماری باشد، برنگزیده‌اند. ساماندهی روش شبیه‌سازی نمونه‌ها و نیز تأکید بر نظارت توامان رفتارهای نمونه‌های متوالی در نمودارهای کنترل میانگین و تغییرپذیری، اهداف پژوهش جاری می‌باشند. در این راستا، به‌کارگیری از نمودار کنترل S2 برای پایش تغییرپذیری فرآیندها توصیه می‌شود. متأسفانه در منابع کنترل کیفیت به این نمودار کمتر توجه شده است؛ درحالی‌که دقت آن به‌دلیل نااریبی نمونه‌ها، بالاست. برای نیل به این اهداف، تابع توزیع آماری نوسانات طبیعی نمونه‌ها در نمودار کنترل S2 استخراج می‌گردد. سپس، مولدهای الگوهای غیرطبیعی پایه در نمودارهای کنترل مشخصه‌های کیفی متغیر به‌همراه پارامترهای عددی متناظر تشریح می‌شوند. همچنین ضعف‌های جدی روش شبیه‌سازی نمونه‌ها در پژوهش‌های گذشته بیان و براساس دستاوردهای پژوهش جاری راهکارهایی ارائه خواهند شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulating Natural Variations of Samples and Basic Patterns in S2 Control Chart

نویسندگان [English]

  • Seyyed Ali Lesany 1
  • Seyyed Mohammad Taghi Fatemi Ghomi 2
1 Professor of Industrial Engineering, Department of Industrial Engineering, AmirKabir University of Technology, Tehran, Iran.
2 M.A. in Industrial Engineering, Department of Industrial Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
چکیده [English]

Since 1990 up to now, numerous papers with various problem-solving have been presented to recognize and analyze the basic patterns in process control charts. These papers have commonly utilized the simulated samples for testing, evaluating and training their proposed models. Most papers have studied the behaviour of the runs of consecutive samples in mean or individual measurement control charts, and have not simultaneously interpreted the patterns in variability and mean control charts. On the other hand, few papers which have monitored simultaneously the patterns in variability and mean control charts, have not selected the generalized method based on statistical reasoning to simulate samples in variability control chart. The presentation of a simulation method of samples in variability control chart and also, emphasizing simultaneous monitor of successive samples behaviour in mean and variability control charts, are the aims of current work. In this way, we recommend applying S2 control chart to monitor process variability. Unfortunately, little attention has been given to the usage of this chart in quality control references; while samples are unbiased in S2 chart and therefore its accuracy is high. To reach these goals, the statistical distribution function of samples in S2 chart is known. Then, the generating functions of the basic patterns in variable quality characteristics control charts and also numerical parameters corresponding to the patterns will be described. Moreover, the disadvantages of the samples simulation method in previous papers will be explained and based on the proposed simulations in this study, solutions will be presented.

کلیدواژه‌ها [English]

  • S2 Control Chart
  • Simulation
  • Natural Variations of Samples
  • Basic Patterns
  • Simultaneous Monitor
  • Garcia, E., Penabaena-Niebles, R., Jubiz-Diaz, M., Perez-Tafur, A. (2022). “Concurrent control chart pattern recognition: A systematic review”, Mathematics, 10(6). https://doi.org/10.3390/math10060934
  • Ruey Guh Sh. (2010), “Simultaneous process mean and variance monitoring using artificial neural network”, Computers & Industrial Engineering, 58(4): 739-753. https://doi.org/10.1016/j.cie.2010.02.004
  • Lin, S.Y., Ruey Guh, Sh., Shiue, Y.R. (2011). “Effective recognition of control chart patterns in autocorrelated data using a support vector machine based approach”, Computers & Industrial Engineering, 61(4): 1123-1134. https://doi.org/10.1016/j.cie.2011.06.025
  • Fatemi Ghomi, S.M.T., Lesany, S.A., Koockakzadeh, A. (2011). “Recognition of unnatural patterns in process control charts through combining two types of neural networks”, Applied Soft Computing, 11(8): 5444-5456. https://doi.org/10.1016/j.asoc.2011.05.014
  • Ebrahimzadeh, A., Addeh, J., Rahmani, Z. (2012). “Control chart pattern recognition using K-MICA clustering and neural networks”, ISA Transactions, 51(1): 111-119. https://doi.org/10.1016/j.isatra.2011.08.005
  • Du, S., Huang, D., Lv, J. (2013). “Recognition of concurrent control chart patterns using wavelet transform decomposition and multiclass support vector machines”, Computers & Industrial Engineering, 66(4): 683-695. https://doi.org/10.1016/j.cie.2013.09.012
  • Yang, W., Yu, G., Liao, W. (2013). “A hybrid learning-based model for simultaneous monitoring of process mean and variance”, Quality and Reliability Engineering International, 31(3): 445-463. https://doi.org/10.1002/qre.1604
  • Gu, N., Cao, Z., Xie, L., Creighton, D., Tan, M., Nahavandi S. (2013). “Identification of concurrent control chart patterns with singular spectrum analysis and learning vector quantization”, Journal of Intelligent Manufacturing, 24: 1241-1252. https://doi.org/10.1007/s10845-012-0659-0
  • Xanthopoulos, P., Razzaghi, T. (2014). “A weighted support vector machine method for control chart pattern recognition”, Computers & Industrial Engineering, 70: 134-149. https://doi.org/10.1016/j.cie.2014.01.014
  • Addeh, J., Ebrahimzadeh, A., Azarbad, M., Ranaee, V. (2014). “Statistical process control using optimized neural networks: A case study”, ISA Transactions, 53(5): 1489-1499. https://doi.org/10.1016/j.isatra.2013.07.018
  • Lesany, S.A., Koochakzadeh, A., Fatemi Ghomi, S.M.T. (2014). “Recognition and classification of single and concurrent unnatural patterns in control charts via neural networks and fitted line of samples”, International Journal of Production Research, 52(6): 1771-1786.https://doi.org/10.1080/00207543.2013.848483
  • Haghtalab, S., Xanthopoulos, P., Madani, K. (2015). “A robust unsupervised consensus control chart pattern recognition framework”, Expert Systems with Applications, 42(19): 6767-6776. https://doi.org/10.1016/j.eswa.2015.04.069
  • Cheng, C.S., Huang, K.K., Chen, P.W. (2015). “Recognition of control chart patterns using a neural network-based pattern recognizer with features extracted from correlation analysis”, Pattern Analysis and Applications, 18(1): 75-86. https://doi.org/10.1007/s10044-012-0312-8
  • Pelegrina, G.D., Duarte, L.T., Jutten, Ch. (2016). “Blind source separation and feature extraction in concurrent control charts pattern recognition: Novel analyses and a comparison of different methods”, Computers & Industrial Engineering, 92: 105-114. https://doi.org/10.1016/j.cie.2015.12.017
  • Khormali, A., Addeh, J. (2016). “A novel approach for recognition of control chart patterns: Type-2 fuzzy clustering optimized support vector machine”, ISA Transactions, 63: 256-264. https://doi.org/10.1016/j.isatra.2016.03.004
  • Addeh, A., Khormali, A., Amiri Golilarz, N. (2018). “Control chart pattern recognition using RBF neural network with new training algorithm and practical features”, ISA Transactions, 79: 202-216. https://doi.org/10.1016/j.isatra.2018.04.020
  • Lesany, S.A., Fatemi Ghomi, S.M.T., Koochakzadeh, A. (2019). “Development of fitted line and fitted cosine curve for recognition and analysis of unnatural patterns in process control charts”, Pattern Analysis and Applications, 22 (2): 747-765. https://doi.org/10.1007/s10044-018-0682-7
  • Kalteh, A.A., Babouei, S. (2020). “Control chart patterns recognition using ANFIS with new training algorithm and intelligent utilization of shape and statistical features”, ISA Transactions, 102: 12-22. https://doi.org/10.1016/j.isatra.2019.12.001
  • Zhang, M., Yuan, Y., Wang, R., Cheng, W. (2020). “Recognition of mixture control chart patterns based on fusion feature reduction and fireworks algorithm-optimized MSVM”, Pattern Analysis and Applications, 23(1): 15-26. https://doi.org/10.1007/s10044-018-0748-6
  • Yu, Y., Zhang, M. (2021). “Control chart recognition based on the parallel model of CNN and LSTM with GA optimization”, Expert System with Applications, 185, 115689. https://doi.org/10.1016/j.eswa.2021.115689
  • Chiu, J.E., Tsai, C.H. (2021). “On-line concurrent control chart pattern recognition using singular spectrum analysis and random forest”, Computers & Industrial Engineering, 159, 107538. https://doi.org/10.1016/j.cie.2021.107538
  • Lee, P., Torng, C., Lin, C., Chou, C. (2022). “Control chart pattern recognition using spectral clustering technique and support vector machine under gamma distribution”, Computers & Industrial Engineering, 171, 108437. https://doi.org/10.1016/j.cie.2022.108437
  • Li, Y., Dai, W., He, Y. (2024). “Control chart pattern recognition under small shifts based on multi-scale weighted ordinal pattern and ensemble classifier”, Computers & Industrial Engineering, 189, 109940. https://doi.org/10.1016/j.cie.2024.109940
  • Montgomery, D.C. (2009). Introduction to Statistical Quality Control, 6th Edition, John Wiley & Sons, United States.
  • Grant, E.L. Leavenworth, R.S. (1996). Statistical Quality Control, 7th Edition, McGraw-Hill, United States.
  • Bain, J.L. Engelhardt, M. (1992). Introduction to Probability and Mathematical Statistics, 2nd Edition, PWS-KENT, Boston, United States.
  • Freund, J.E. (1992). Mathematical Statistics, 5th Edition, Prentice-Hall, United States.
  • Mendenhall, W. Wackerly, D.D. Scheaffer, R.L. (1990). Mathematical Statistics with Applications, 4th Edition, PWS-KENT, Boston, United States.
  • Hagan, M.T. Demuth, H. Beale, M. (1996). Neural Network Design, PWS Publishing Company, Boston, United States.