پیاده‌سازی رویکرد ترکیبی میانگین متحرک یکپارچه خودرگرسیون-شبکه عصبی و میانگین متحرک یکپارچه خودرگرسیون-روش پیش‌بینی محلی در سیستم مدیریت ترافیک. مطالعه موردی: فرودگاه یک کلان‌شهر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای گروه مهندسی صنایع، دانشکدۀ مهندسی صنایع، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 استاد گروه مهندسی صنایع، دانشکدۀ مهندسی صنایع، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

امروزه، باتوجه به ضرورت انجام پیش‌­بینی در بسیاری از مسائل دنیای واقعی، پیش‌­بینی سری‌­های زمانی یکی از موضوعات اصلی مورد بحث و تحقیق می‌­باشد. مدیریت حمل‌ونقل کلان­شهرها یکی از مسائل چالش‌برانگیز در حیطه پیش‌­بینی است. پیش­‌بینی دقیق و قابل اطمینان از جمله نیازهای یک سیستم حمل‌ونقل هوشمند می­‌باشد. در این مطالعه، هدف پیش‌­بینی تعداد مسافرین ورودی به فرودگاه یک کلان­شهر جهت ارائه خدمات مطلوب به مسافرین است. متغیر مورد مطالعه در این مقاله مشابه مفهوم متغیر جریان در مدیریت ترافیک می‌­باشد. اغلب مطالعات انجام شده در حیطه مدیریت ترافیک از روش‌­های خطی و یا غیرخطی برای پیش­بینی آینده بهره گرفته‌­اند و مزایای استفاده از رویکردهای ترکیبی مورد توجه قرار نگرفته است. در مطالعات پیشین، روش­‌های ترکیبی میانگین متحرک یکپارچه خودرگرسیون-شبکه عصبی مصنوعی (ARIMA-ANN) متنوعی توسعه یافته‌­اند که روابط میان داده‌ها را بررسی می‌­کنند. مطالعه حاضر، از یک رویکرد ARIMA-ANN برای تجزیه داده‌­ها به دو قسمت کم‌نوسان و پرنوسان و انجام پیش­‌بینی دقیق استفاده می­‌کند. علاوه‌‌بر این، در این مطالعه محققین یک رویکرد ترکیبی جدید، میانگین متحرک یکپارچه خودرگرسیون-تکنیک پیش‌­بینی محلی (ARIMA-Local) برای بررسی کارایی سایر روش‌­های غیرخطی ارائه کرده­‌اند. نتایج عددی حاصل از پیاده‌­سازی روش‌های مذکور بر روی مطالعه موردی، دقت بالای روش ARIMA-ANN در پیش‌­بینی و همچنین قابلیت بهتر روش ARIMA-Local در مقایسه با روش‌­های انفرادی شبکه عصبی مصنوعی و هموارسازی نمایی را نشان می‌­دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Implementation of Hybrid ARIMA-ANN and ARIMA- Local Prediction Techniques in the Traffic Management System. Case Study: Airport of a Metropolis

نویسندگان [English]

  • Shadi Sadri 1
  • Seyed Mohammad Taghi Fatemi Ghomi 2
1 Ph.D. student, Department of Industrial Engineering, Faculty Industrial Engineering, Amirkabir University of Technology, Tehran, Iran
2 Professor, Department of Industrial Engineering, Faculty of Industrial Engineering, Amirkabir University of Technology, Tehran, Iran
چکیده [English]

Nowadays, time series prediction is one of the fundamental research purposes, owing to the importance of prediction in various real-world applications. Transportation management is one of the main issues of each municipality that needs prediction. Accurate and reliable forecasting is one of the fundamental goals of an intelligent transportation system. In the literature, it is defined several variables of traffic management such as speed, time, and flow. In the proposed paper, a case of an Airline is considered. The associated managers are planning to propose a new service for passengers. There is a need to predict the number of passengers on arriving flights to a metropolis in Iran. This variable is inherently similar to the flow in traffic management. In the literature on traffic management, most of the studies implemented a linear or nonlinear modeling method to predict the future and ignore the advantage of hybrid methods. Several hybrid ARIMA-ANN methods have been proposed to specify the underlying relationships among the data. This paper utilizes a hybrid ARIMA-ANN model which decomposes the data into low-volatile, and high-volatile components to predict accurately. Also, the current paper develops a new hybrid method, ARIMA-Local method, to specify the efficiency of other provided nonlinear methods in a hybrid structure. The obtained results for the discussed case are reported. This study signifies the accuracy of ARIMA-ANN model in predicting, while also the ARIMA-Local method is efficient in forecasting in comparison to the individual models of ANN and Exponential smoothing.

کلیدواژه‌ها [English]

  • Artificial Neural Network (ANN)
  • Auto-Regressive Integrated Moving Average (ARIMA)
  • Hybrid ARIMA-ANN
  • Hybrid ARIMA-Local Method
  • Intelligent Traffic Management
  • Khashei, M., Bijari, M. )2011(. A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Applied Soft Computing, 11: 2664-2675.
  • شیخ­الاسلامی، عبدالرضا، خاکسار، حسن، احمدی، نادر. 1393. برنامه‌ریزی حمل‌ونقل: ارائه روش‌های متداول ادهاک و سری­های زمانی در پیش­بینی مؤلفه­های ترافیکی، هشتمین کنگره ملی مهندسی عمران، 1393.
  • خسروشاهی، حسین، معطر حسینی، سید محمد، مرجانی، محمدرضا. 1393. اندازه­گیری اثر شلاق چرمی در یک زنجیره‌تأمین خطی سه‌سطحی با استفاده از روش میانگین متحرک برای برآورد تقاضا، پژوهش­های مهندسی صنایع در سیستم­های تولید، شماره 4، 21-37.
  • غفاری، فرهاد، فرهادی چشمه مرواری، عقیق. 1394. بررسی توان پیش‌بینی مدل­های ARIMA، GARCH، ARIMA-GARCH و State space به‌کمک روش شبیه­سازی مونت کارلو. اقتصاد کاربردی، شماره 16، 33-42.
  • Xumei, C., Huibo, G., Wang, J. (2012). BRT vehicle travel time prediction based on SVM and Kalman filter. Journal of Transportation Systems Engineering and Information Technology, 12: 29-34.
  • Jiang, Z., Zhang, C., Xia, Y. (2014). Travel Time Prediction Model for Urban Road Network based on Multi-source Data. Procedia- Social and Behavioral Sciences, 138: 811-818.
  • Haworth, J., Shawe-Taylor, J., Cheng, T., Wang, J. (2014). Local online kernel ridge regression for forecasting of urban travel times. Transportation Research Part C: Emerging Technologies, 46: 151-178.
  • Elhenawy, M., Chen, H., Rakha, H. A. (2014). Dynamic travel time prediction using data clustering and genetic programming. Transportation Research Part C: Emerging Technologies, 42: 82-98.
  • Sun, J., Sun, J. (2015). A dynamic Bayesian network model for real-time crash prediction using traffic speed conditions data. Transportation Research Part C: Emerging Technologies, 54: 176-186.
  • Sadaei, H.J., Guimarães, F.G., da Silva, C.J., Lee, M.H., and Eslami, T. (2017). Short-term load forecasting method based on fuzzy time series, seasonality and long memory process. International Journal of Approximate Reasoning, 83: 196-217.
  • Murça, M.C.R., and Hansman, R.J. (2018). Predicting and planning airport acceptance rates in metroplex systems for improved traffic flow management decision support. Transportation Research Part C: Emerging Technologies, 97: 301-323.
  • Kong, X., Xu, Z., Shen, G., Wang, J., Yang, Q., Zhang, B. (2016). Urban traffic congestion estimation and prediction based on floating car trajectory data. Future Generation Computer Systems. 61: 97-107.
  • Xu, S., Chan, H.K., Zhang, T. (2019). Forecasting the demand of the aviation industry using hybrid time series SARIMA-SVR approach. Transportation Research Part E: Logistics and Transportation Review, 122: 169-180.
  • Qu, L., Li, W., Li, W., Ma, D., Wang, Y. (2019). Daily long-term traffic flow forecasting based on a deep neural network. Expert Systems with applications, 121: 304-312.
  • Villarroya, C., Calafate, C. T., Onaindia, E., Cano, J. C., Martinez, F. J. (2022). Neural Network-based Model for Traffic Prediction in the City of Valencia, 26th International Conference on Knowledge-Based and Intelligent Information & engineering Systems (KES 2022), 552- 562.
  • Sadeghi Gargari, N., Panahi, R., Akbari, H., Ng, A.K.Y. (2022). Long-Term Traffic Forecast Using Neural Network and Seasonal Autoregressive Integrated Moving Average: Case of a Container Port, Transportation Research Record, 2676: 236-252.
  • Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50: 159-175
  • Valenzuela, O., Rojas, I., Rojas, F., Pomares, H., Herrera, L. J., Guillén, A. Pasadas, M. (2008). Hybridization of intelligent techniques and ARIMA models for time series prediction. Fuzzy Sets and Systems, 159: 821-845.
  • Faruk, D. Ö. (2010). A hybrid neural network and ARIMA model for water quality time series prediction. Engineering Applications of Artificial Intelligence, 23: 586-594.
  • Babu, C. N., Reddy, B. E., 2014. A moving-average filter-based hybrid ARIMA–ANN model for forecasting time series data. Applied Soft Computing, 23: 27-38.
  • Box, G. E., Jenkins, G. , Reinsel, G. C., Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
  • Yaghini, M., Khoshraftar, M. M., Fallahi, M. (2013). A hybrid algorithm for artificial neural network training. Engineering Applications of Artificial Intelligence, 26: 293-301.
  • Toro, C. H. F., Meire, S. G., Gálvez, J. F., Fdez-Riverola, F. (2013). A hybrid artificial intelligence model for river flow forecasting. Applied Soft Computing, 13, 3449-3458.