روش جدید تصمیم‌گیری چندمعیاره فازی شهودی برای مسأله طراحی شبکه زنجیره‌تأمین پیوند اعضای بدن: الگوریتم فراابتکاری عقاب طلایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه شاهد، تهران، ایران

2 دانشیار گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه شاهد، تهران، ایران

چکیده

در دنیای امروز جایگاه اهدای عضو به‌عنوان یک فرایند زندگی‌بخش در سطح دنیا مشخص شده و مورد استقبال بسیاری از افراد در جوامع مختلف قرار گرفته است. این فرایند می‌تواند موجب بالا رفتن سطح کیفیت زندگی افراد در کشورهای مختلف شده و سطح امنیت اجتماعی را نیز افزایش دهد. در این پژوهش به‌منظور بررسی مسأله اهدای عضو، یک شبکه زنجیره‌تأمین ارائه می­‌گردد که شامل سه بخش بیمارستان‌های اهدا، مراکز پیوند و مراکز گیرنده می‌باشد. همچنین، به‌منظور اتخاذ تصمیم مناسب جهت انتخاب بهترین گیرنده، از یک روش جدید تصمیم‌گیری تحت شرایط عدم­قطعیت فازی شهودی استفاده می‌­گردد و پس از آن مدل ریاضی پیشنهادی ارائه می­‌شود. در این مدل، الزامات تغییرات آب‌وهوایی و اثرات آن بر سیستم حمل‌ونقل، کیفیت اعضای بدن متأثر از زمان سرد ایسکمی و صف در مراکز پیوند مورد بررسی قرار می­‌گیرد. ارائه­ یک روش تصمیم‌­گیری نوین جهت انتخاب بهترین نوع گیرنده عضو و بهره‌­مندی از مدل‌سازی ریاضی با رویکرد­های به‌کارگیری موضوعات کیفیت اعضا، ریسک تغییرات آب­و­هوایی و مفهوم صف از نقاط قوت و نوآوری‌­های اساسی این مقاله می­‌باشد. در ادامه، پس از ارائه مدل، ابتدا با استفاده از یک رویکرد برنامه‌ریزی سازشی، مدل چندهدفه پیشنهادی با اهداف هزینه، زمان و کیفیت عضو به یک مدل تک­‌هدفه معادل تبدیل می­‌شود. پس از آن، به‌منظور حل مسأله از یک الگوریتم فراابتکاری عقاب طلایی استفاده می­‌شود. سرانجام به‌منظور اعتبارسنجی روش تصمیم‌گیری و مدل ریاضی پیشنهادی از یک مثال کاربردی استفاده می‌­‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

A New Intuitionistic Fuzzy Multi-Criteria Decision-making Method for Designing Organ Transplantation Supply Chain Network Problem: Golden Eagle Metaheuristic Algorithm

نویسندگان [English]

  • Sina Salimian 1
  • Seyed Meysam Mousavi 2
1 Ph.D. Candidate, Department of Industrial Engineering, Faculty of Engineering, Shahed University, Tehran, Iran
2 Associate Professor, Department of Industrial Engineering, Faculty of Engineering, Shahed University, Tehran, Iran
چکیده [English]

In today's world, organ donation has been identified as a life-giving process worldwide and has been welcomed by many people in different societies. This process can increase the people's quality of life in various countries and also increase the level of social security. In this study, to investigate the issue of organ donation, a supply chain network is presented that includes three sections: donation hospitals, transplant centers, and recipient zones. Besides, to make the appropriate decision to select the best receiver, a new multi-criteria decision-making (MCDM) method is used under intuitionistic fuzzy conditions. Then the proposed mathematical model is presented. In this model, the requirements of climate change and its effects on the transportation system, the quality of organs affected by cold ischemic time, and queuing in transplant centers are examined. A new decision-making method to select the best type of organ recipient and benefit from mathematical modeling provides to apply the issues of organ quality, climate change risk, and the concept of queuing that are the strengths points and innovations of this paper. Then, after presenting the model, using a compromise solution approach, the proposed multi-objective model with the objectives of cost, time, and quality of the organs becomes an equivalent one-objective model. Then, a golden eagle meta-heuristic algorithm is used to solve the problem. Finally, a practical example validates the decision-making method and the proposed mathematical model.

کلیدواژه‌ها [English]

  • Multi-criteria decision-making
  • Intuitionistic fuzzy
  • Transplant network design
  • Compromise solution
  • Golden eagle algorithm
  • Vong, G. (2017). The ethical asymmetry between a head. body transplant and multiple organ transplants: overall health, justice, and risk. AJOB Neuroscience8(4), 217-219.
  • Zahiri, B., Tavakkoli-Moghaddam, R., & Pishvaee, M. S. (2014). A robust possibilistic programming approach to multi-period location–allocation of organ transplant centers under uncertainty. Computers & Industrial Engineering74, 139-148.
  • Neumann, U. P., Langrehr, J. M., Kaisers, U., Lang, M., Schmitz, V., & Neuhaus, P. (2002). Simultaneous splenectomy increases risk for opportunistic pneumonia in patients after live transplantation. Transplant international15(5), 226-232.
  • Lindemann, J., Dageforde, L. A., Brockmeier, D., Vachharajani, N., Scherer, M., Chapman, W., & Doyle, M. B. M. (2019). Organ procurement center allows for daytime liver transplantation with less resource utilization: may address burnout, pipeline, and safety for field of transplantation. American Journal of Transplantation19(5), 1296-1304.
  • Çay, P. (2012). Organ transplantation logistics: case for Turkey(Doctoral dissertation, Bilkent University).
  • Thompson, D., Waisanen, L., Wolfe, R., Merion, R. M., McCullough, K., & Rodgers, A. (2004). Simulating the allocation of organs for transplantation. Health care management science7(4), 331-338.
  • Kazemeyni, S. M., Bagheri, C. A., & Heidary, A. R. (2004). Worldwide cadaveric organ donation systems (transplant organ procurement).
  • Zahiri, B., Tavakkoli-Moghaddam, R., Mohammadi, M., & Jula, P. (2014). Multi-objective design of an organ transplant network under uncertainty. Transportation Research Part E: Logistics and Transportation Review72, 101-124.
  • Ponticelli, C. E. (2015). The impact of cold ischemia time on renal transplant outcome. Kidney international87(2), 272-275.
  • Sturmberg, J. P., Churilov, L., & McDonnell, G. (2013). Modelling. In Handbook of systems and complexity in health(pp. 81-111). Springer, New York, NY.
  • Valls, A., Moreno, A., & Sánchez, D. (2002). A Multi-Criteria Decision Aid Agent Applied to the Selection of the Best Receiver in a Transplant. In ICEIS(pp. 431-438).
  • La Scalia, G., Aiello, G., Rastellini, C., Micale, R., & Cicalese, L. (2011). Multi-criteria decision-making support system for pancreatic islet transplantation. Expert Systems with Applications38(4), 3091-3097.
  • گلزار راغب، سعید، موسوی، سید میثم، گیتی نورد، حسین، وحدانی، بهنام. (2016). مدل تصمیم گیری گروهی سازشی فازی تردیدی با درنظر گرفتن وزن تصمیم گیران به‌منظور ارزیابی ریسک های ایمنی در پروژه های تولیدی (صنعت کشتی سازی).نشریه پژوهش های مهندسی صنایع در سیستم های تولید،4(7)، 93-103.‎
  • Zhang, H. C., & Huang, S. H. (1994). A fuzzy approach to process plan selection. The international journal of production research32(6), 1265-1279.
  • Gao, J., Guo, F., Ma, Z., & Huang, X. (2021). Multi-criteria decision-making framework for large-scale rooftop photovoltaic project site selection based on intuitionistic fuzzy sets. Applied Soft Computing102, 107098.
  • Torabi, S. A., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy sets and systems159(2), 193-214.
  • Beliën, J., De Boeck, L., Colpaert, J., Devesse, S., & Van den Bossche, F. (2013). Optimizing the facility location design of organ transplant centers. Decision Support Systems54(4), 1568-1579.
  • Caruso, V., & Daniele, P. (2018). A network model for minimizing the total organ transplant costs. European Journal of Operational Research266(2), 652-662.
  • Aghazadeh, S. M., Mohammadi, M., & Naderi, B. (2018). Robust bi-objective cost-effective, multi-period, location-allocation organ transplant supply chain. International Journal of Logistics Systems and Management29(1), 17-36.
  • Savaşer, S., Kınay, Ö. B., Kara, B. Y., & Cay, P. (2019). Organ transplantation logistics: a case for Turkey. OR Spectrum41(2), 327-356.
  • Kargar, B., Pishvaee, M. S., Jahani, H., & Sheu, J. B. (2020). Organ transportation and allocation problem under medical uncertainty: A real case study of liver transplantation. Transportation Research Part E: Logistics and Transportation Review134, 101841.
  • Rouhani, S., Pishvaee, M., & Zarrinpoor, N. (2021). A fuzzy optimization approach to strategic organ transplantation network design problem: A real case study. Decision Science Letters10(3), 195-216.
  • Anukokila, P., Anju, A., & Radhakrishnan, B. (2019). Optimality of intuitionistic fuzzy fractional transportation problem of type-2. Arab Journal of Basic and Applied Sciences26(1), 519-530.
  • Ejegwa, P. A., Akubo, A. J., & Joshua, O. M. (2014). Intuitionistic fuzzy set and its application in career determination via normalized Euclidean distance method. European scientific journal10(15).
  • Khatibi, V., & Montazer, G. A. (2009). Intuitionistic fuzzy set vs. fuzzy set application in medical pattern recognition. Artificial Intelligence in Medicine47(1), 43-52.
  • Atanassov, K., & Gargov, G. (1989). Interval-valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 31(3), 343–349.
  • Atanassov, K. T. (1994). New operations defined over the intuitionistic fuzzy sets. Fuzzy sets and Systems61(2), 137-142.
  • Xu, Z., & Yager, R. R. (2006). Some geometric aggregation operators based on intuitionistic fuzzy sets. International journal of general systems35(4), 417-433.
  • Yue, Z. (2014). Aggregating crisp values into intuitionistic fuzzy number for group decision making. Applied Mathematical Modelling38(11-12), 2969-2982.
  • Liu, N., & Xu, Z. (2021). An overview of ARAS method: Theory development, application extension, and future challenge. International Journal of Intelligent Systems36(7), 3524-3565.
  • Mehlawat, M. K., & Gupta, P. (2016). A new fuzzy group multi-criteria decision making method with an application to the critical path selection. The International Journal of Advanced Manufacturing Technology83(5-8), 1281-1296.
  • Heidary Dahooie, J., Beheshti Jazan Abadi, E., Vanaki, A. S., & Firoozfar, H. R. (2018). Competency‐based IT personnel selection using a hybrid SWARA and ARAS‐G methodology. Human Factors and Ergonomics in Manufacturing & Service Industries28(1), 5-16.
  • Büyüközkan, G., & Güler, M. (2020). Smart watch evaluation with integrated hesitant fuzzy linguistic SAW-ARAS technique. Measurement153, 107353.
  • Dorfeshan, Y., Mousavi, S. M., Zavadskas, E. K., & Antucheviciene, J. (2021). A New Enhanced ARAS Method for Critical Path Selection of Engineering Projects with Interval Type-2 Fuzzy Sets. International Journal of Information Technology & Decision Making20(1), 37-65.
  • Ghenai C, Albawab M, Bettayeb M (2019) Sustainability indicators for renewable energy systems using multi-criteria decision-making model and extended SWARA/ARAS hybrid method. Renew Energy 146:580–597
  • Matzarakis, A., Blazejczyk, K., & Amelung, B. (2007). Climate change and tourism assessment and coping strategies. Freiburg: Maastricht-Warsaw.
  • Ha, J. W., & Kim, S. J. (1997). Solid Organ Transplantation in Korea: 1996. The Journal of the Korean Society for Transplantation11(2), 183-130.
  • Valls, A., & Moreno, A. (2003). Assisting the Spanish Organ Transplant Coordination Process with Multi-Agent Systems. In Applications of Software Agent Technology in the Health Care Domain(pp. 181-197). Birkhäuser, Basel.
  • Mosallaeipour, S., Mahmoodirad, A., Niroomand, S., & Vizvari, B. (2018). Simultaneous selection of material and supplier under uncertainty in carton box industries: a fuzzy possibilistic multi-criteria approach. Soft computing22(9), 2891-2905.
  • حاجی سلطانی، مهدی، سیف برقی. (2020). ارائه مدلی چندهدفه برای مکان‌یابی-تخصیص سیستم‌های مراقبت سلامت پیشگیرانه با تقاضای احتمالی.نشریه پژوهش های مهندسی صنایع در سیستم های تولید،8(16)، 15-37.‎
  • Golabi, M., Izbirak, G., & Arkat, J. (2018). Multiple-server facility location problem with stochastic demands along the network edges. Journal of Engineering Research6(4).
  • Karimi-Mamaghan, M., Mohammadi, M., Pirayesh, A., Karimi-Mamaghan, A. M., & Irani, H. (2020). Hub-and-spoke network design under congestion: A learning based metaheuristic. Transportation Research Part E: Logistics and Transportation Review142, 102069.
  • Shakil, M., Fuad Yousif Mohammed, A., Arul, R., Bashir, A. K., & Choi, J. K. (2019). A novel dynamic framework to detect DDoS in SDN using metaheuristic clustering. Transactions on Emerging Telecommunications Technologies, e3622.
  • Mohammadi-Balani, A., Nayeri, M. D., Azar, A., & Taghizadeh-Yazdi, M. (2021). Golden eagle optimizer: A nature-inspired metaheuristic algorithm. Computers & Industrial Engineering152, 107050.
  • Rouyendegh, B. D., Yildizbasi, A., & Üstünyer, P. (2020). Intuitionistic fuzzy TOPSIS method for green supplier selection problem. Soft Computing24(3), 2215-2228.
  • Nemes, B., Gámán, G., Polak, W. G., Gelley, F., Hara, T., Ono, S., & Eguchi, S. (2016). Extended-criteria donors in liver transplantation Part II: reviewing the impact of extended-criteria donors on the complications and outcomes of liver transplantation. Expert review of gastroenterology & hepatology10(7), 841-859