مدل سازی ریاضی تأثیر برنامه‌های مدیریت سمت تقاضا بر انرژی الکتریکی مصرفی صنایع براساس زمان‌بندی سلول‌های تولید مجازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی صنایع، پردیس فنی و مهندسی، دانشگاه یزد، یزد، ایران

2 دانشگاه یزد

3 استاد، دانشکده مهندسی صنایع، پردیس دانشکده های فنی، دانشگاه تهران، تهران، ایران

چکیده

در این مقاله، تأثیر برنامه‌های مدیریت سمت تقاضا با محاسبه‌ی انرژی مصرفی الکتریکی و میزان همکاری صنایع در برنامه­های مدیریت سمت تقاضا، زمان‌بندی سلول­های تولید مجازی، به‌صورت برنامه­ریزی عدد صحیح مختلط مدل­سازی گردیده است. در این مدل، با توجه به ماهیت صنایع بزرگ و سنگین و تأثیرگذاری آن‌ها در برنامه­های پاسخ‌گویی بار از سلول­های مجازی استفاده شده است. هدف این مدل حداکثر کردن میزان پاداش همکاری در برنامه­های تشویق‌محور مدیریت سمت تقاضا و کمینه کردن زمان اتمام آخرین کار و نیز هزینه‌های انرژی الکتریکی و جابه­جایی و شاخص­های عملکردی مانند حداکثر توان الکتریکی مصرفی و زمان تأخیر موقعیت کارها بر‌روی هر ماشین می­باشد. براین‌اساس مدل ارائه شده از دسته مدل­های چندهدفه می­باشد که جهت به‌دست آوردن جواب بهینه از روش L-P متریک و از نرم‌افزار بهینه­سازی گمز استفاده شده است و نتایج حل چند مثال عددی در دو قسمت شاخص­های عملکردی و مدیریت سمت تقاضا با استفاده از مدل پیشنهادی و مرجع ارائه شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Mathematical modeling of the influence of demand-side management programs on electrical energy consumption in industries based on the scheduling of virtual manufacturing cells

نویسندگان [English]

  • Mahdi Sarembafandeh 1
  • Hasan Hosseini nasab 2
  • Reza Tavakkoli-Moghaddam 3
1 PhD Student, Department of Industrial Engineering, Technical and Engineering Campus, Yazd University, Yazd, Iran
2 yazd University
3 Professor, School of Industrial Engineering, Colleges of Engineering, University of Tehran, Tehran, Iran
چکیده [English]

 
This paper presents a mixed-integer programming model for the influence of demand-side management programs by calculating electricity consumption, the quality of cooperation of industries in demand-side management programs, and the foundation of virtual manufacturing cell scheduling. In this model, the time of travel among machines and machine work/task load balance are utilized due to the nature of large and heavy industries and their effectiveness in demand response programs compared to virtual cells, which are a compound of cellular and flexible manufacturing systems regarding the preparation times depending on the sequence of operations. This model aims to maximize the bonus of cooperation in reward-oriented programs of demand-side management, minimize the time of completing the last task, and minimize the energy and travel expenses. The performance indices (e.g., maximum electrical power consumption, machine sequence, and the latency of the positions of loads on each machine) and the results of solving some numerical examples are shown and analyzed. Accordingly, the proposed model is a multi-objective model that to obtain the optimal answer, the L-P metric method and Gams optimization software have been used. The results are presented in several numerical examples in two parts of performance characteristics and demand-side management using the proposed and reference model.

کلیدواژه‌ها [English]

  • Demand-side management
  • Virtual manufacturing cell
  • Scheduling
  • Demand response programs
  • Electric energy
  • Maximum electrical power
[1]    Gellings, C., Clark, W. (1985). “The concept of demand-side management for electric utilities”, Proceedings of the IEEE, 73: 1468–1470.
[2]    سرافرازی، عباس، بشیری، مهدی، توکلی مقدم، رضا. (1397)، مدل‌سازی چندهدفه خوشه‌های صنعتی از منظر تولید سلولی پویا و توسعه اقتصادی پایدار، فصل‌نامه مدل‌سازی اقتصادسنجی، 2: 49-91.
[3]    Montreuil, B. (1999). “Fractal layout organization for job shop environments”, International journal of production research, 37: 501–521.
[4]    Paulus, M., Borggrefe, F. (2009). “The potential of demand – side management in energy intensive industries for electricity markets in Germany”, The 5th Conf. on Sustainable Development of Energy, Water and Environment Systems Dubrovnik.
[5]    Esmailnajad, S., Sundquist, J. (2014) “Demand Side Management in Swedish Industry”, M.Sc. Thesis in Chalmers University of Technology, Sweden.
[6]    Zhou, D., Zhou, K., Zhu, L., Zhao, J., Xu, Z., Shao, Z., Chen, X. (2017). “Optimal scheduling of multiple sets of air separation units with frequent load-change operation”, Separation and Purification Technology, 172: 178–191.
[7]    Valdes, J. (2019). “Industry, flexibility, and demand response: Applying German energy transition lessons in Chile”. Energy Research & Social Science, 54: 12–25.
[8]    Altom, R.J., (1978). “Costs and Savings of Group Technology”, Research report, Society of Manufacturing Engineers, Dearborn.
[9]    McLean, CR., Bloom, HM., Hopp TH. (1982). “The virtual manufacturing cell”, In Proc. Fourth IFAC/IFIP Conference on Information Control Problems in Manufacturing Technology. 105–111.
[10] Kesen, SE., Das, S.K., Gungor, Z. (2010). “A mixed integer programming formulation for scheduling of virtual manufacturing cells (VMCs)”, International Journal Advanced Manufacturing Technology, 47: 665–678.
[11] Kesen, S.E., Das, S.K., Gungor, Z. (2010). “A genetic algorithm-based heuristic for scheduling of virtual manufacturing cells (VMCs)”, International Journal of Computers & Operations Research, 37: 1148-1156.
[12] Lahmar, M., Benjaafar, S. (2007). “Design of distributed layouts”, IIE Transactions, 37: 303-318.
[13] پایدار، محمد مهدی، سعیدی مهرآباد، محمد. (1393). طراحی یک مدل یکپارچه استوار دوهدفه زنجیره‌تأمین و آرایش سلولی مجازی پویا، نشریه پژوهش‌های مهندسی صنایع در سیستم‌های تولید، 2: 33-35.
[14] رفیعی، مجید، محمدی طلب، عطیه. (1396). ارائه مدل ریاضی با رویکرد بهینه‌سازی استوار برای طراحی سیستم تولید سلولی پویا با درنظرگیری ماشین‌آلات چندکاره، نشریه پژوهش‌های مهندسی صنایع در سیستم‌های تولید، 9: 281-295.
[15] افسر، امیر، بهنامیان، جواد. (1398). زمان‌بندی چند عاملی ماشین‌های موازی ناهمگن با درنظر گرفتن هزینه انرژی و کارهای به‌هنگام، نشریه پژوهش‌های مهندسی صنایع در سیستم‌های تولید، 15: 278-303.
[16] The International Institute for Energy Conservation (IIEC). (2006). “Demand side management best practices guidebook”. the United Nations Department of Economic and Social Affairs (USAID).
[17] River, C. (2005). “Primer on demand-side management with an emphasis on price-responsive programs”, report prepared for the world bank, 06090, Charles River Associates, Washington, DC.
[18] Lampropoulos, I., Kling, W. L., Ribeiro, P. F., and van den Berg, J. (2013). “History of demand side management and classification of demand response control schemes”, IEEE Power and Energy Society General Meeting (PES), (Vancouver, BC), 1-5.
[19] Hatami, A., Seifi H., and Sheik-El-Eslami, M. (2009). “A stochastic-based decision-making framework for an electricity retailer: time-of-use pricing and electricity portfolio optimization”, IEEE Transactions on Power Systems, 26: 1808-1816.
[20] Albadi, M.H., El-Saadany, E.F. (2008). “A summary of demand response in electricity markets”, Electric Power Systems Research, 78: 1989-1996.
[21] Subash Babu, A., Nandurkar, K.N., Thomas, A. (2000). “Development of virtual cellular manufacturing systems for SMEs”, Logistics Information Management, 13: 228-242.
[22] Nomden, G., Zee, D., Van Der, J. (2008). “Virtual Cellular Manufacturing: Configuring Routing Flexibility”, International Journal of Production Economics, 112: 439-451.
[23] Mohammad Golmohammadi, A., Honarvar, M., Hosseini-Nasab, H., and Tavakkoli-Moghaddam, R. (2018). “Machine Reliability in a Dynamic Cellular Manufacturing System: A Comprehensive Approach to a Cell Layout Problem”, International Journal of Industrial Engineering & Production Research, 29: 175-196.
[24] Jahed, A., Tavakkoli-Moghaddam, R. (2021). “Mathematical Modeling for a Flexible Manufacturing Scheduling Problem in an Intelligent Transportation System”, Iranian Journal of Management Studies (IJMS), 14: 189-208.
[25] Shafiee-Gol, S., Kia, R., Kazemi, M., Tavakkoli-Moghaddam, R., and Mostafayi Darmian, S. (2020). “A mathematical model to design dynamic cellular manufacturing systems in multiple plants with production planning and location-allocation decisions”, Soft Computing, Article in Press.
[26] Raoofpanah, H., Ghezavati, V., and Tavakkoli-Moghaddam, R. (2019). “Applying an Imperialist competitive algorithm for scheduling parts in a green cellular manufacturing system with consideration of production planning”, Journal of Industrial and Systems Engineering, 12: 226-248.
[27] Raoofpanah, H., Ghezavati, V., and Tavakkoli-Moghaddam, R. (2019). “Solving a new robust green cellular manufacturing problem with environmental issues under uncertainty using Benders decomposition”, Engineering Optimization, 51: 1229-1250.
[28] Sarem-Bafandeh, M., Tavakkoli-Moghaddam, R. (2016). “A mathematical model for virtual manufacturing cells scheduling with setup time, traveling time, tardiness and machine load balance on a distributed layout”, International Journal of Industrial Engineering & Production Management, 27: 105-114.
[29] Akbarpour, N., Hajiaghaei-Keshteli, M., Tavakkoli-Moghaddam, R. (2020). “New approaches in meta-heuristics to schedule purposeful inspections of workshops in manufacturing supply chains”, International Journal of Engineering - Transactions B: Applications, 33(5): 833-840.
[30] Alimian, M., Ghezavati, V., Tavakkoli-Moghaddam, R.  (2020). “New integration of preventive maintenance and production planning with cell formation and group scheduling for dynamic cellular manufacturing systems”, Journal of Manufacturing Systems, 56: 341-358.