مکان‌یابی- موجودی- تخصیص افزونگی چندهدفه در زنجیره‌تأمین تک‌دوره‌ای با تقاضای احتمالی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی صنایع، دانشگاه کردستان، سنندج، ایران

2 دانشیار گروه مهندسی صنایع، دانشگاه کردستان، سنندج، ایران

3 استادیار گروه مهندسی صنایع، دانشگاه کردستان، سنندج، ایران

10.22084/ier.2021.3925

چکیده

یکی از کارامدترین و شناخته شده‌ترین روش‌های افزایش قابلیت اطمینان کارخانه‌ها و بنگاه‌های تولیدی، اختصاص مناسب اجزای افزونه است، که در پاسخگویی مناسب به تقاضای مشتریان، تحویل به موقع محصولات و کاهش هزینه‌ها بسیار حائز اهمیت بوده و همین موضوع سبب ایجاد یک زنجیره تأمین پایدار و مطمئن می‌شود. در پژوهش پیش‌رو، مسأله بهینه‌سازی همزمان مکان‌یابی تسهیلات-موجودی-تخصیص افزونگی مورد تحقیق قرار گرفته، در این راستا، یک مسأله تک دوره‌ای و سه سطحی شامل تأمین‌کننده، توزیع‌‌‌‌‌‌کننده و خرده‌فروش در نظر گرفته شده است. فرض شده است که تقاضای خرده‌فروش احتمالی بوده و از توزیع نرمال پیروی می‌کند.‌ همچنین به منظور مقابله با نوسانات تقاضا، از استراتژی ادغام ریسک در مسأله استفاده شده که درنتیجه آن، نگهداری موجودی فقط در مراکز توزیع انجام خواهد گرفت. به همین منظور، یک مدل برنامه‌ریزی عدد صحیح غیرخطی جهت بهینه‌سازی هزینه‌های کل زنجیره تأمین و همچنین قابلیت اطمینان آن ارائه شده است. با توجه اینکه مسائل مکان‌یابی–موجودی و همچنین تخصیص افزونگی در دسته مسائل NP-Hard قرار دارند، در نتیجه یک الگوریتم‌ فراابتکاری چند هدفه مبتنی بر الگوریتم تبرید شبیه‌سازی شده، تحت عنوان AMOSA برای حل مسأله مذکور توسعه داده شده و در نهایت نتایج حاصل از آن با استفاده از نتایج حاصل از روش شمارش کامل مورد ارزیابی و سنجش قرار گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

Location-inventory- redundancy allocation optimization problem in a multi-objective single- period supply chain network with stochastic demand

نویسندگان [English]

  • Farid Abdi 1
  • Hiwa Farughi 2
  • Heibatolah Sadeghi 3
  • Jamal Arkat 2
1 Ph.D student of industrial Engineering, University of Kurdistan, Sanandaj, Iran
2 Associate Professor, Department of Industrial Engineering, University of Kurdistan, Sanandaj, Iran
3 Assistant Professor, Department of Industrial Engineering, University of Kurdistan, Sanandaj, Iran
چکیده [English]

Allocating redundancy components is one of the most efficient and well-known ways to increase the reliability of factories; which plays an important role in responding appropriately to customer demand, timely delivery of products and cost reduction. This leads to the creation of a stable and reliable supply chain. In the present study, the subject of simultaneous optimization of facility location-inventory-redundancy allocation has been investigated. In this regard, a single-period, three-level supply chain including supplier, distributor and retailer is considered. It is assumed that demand for each retailer is stochastic and normally distributed. Also, in order to deal with the fluctuations of demand, the risk pooling strategy has been applied, as a result of which, inventory will be held only in distribution centers. For this purpose, a nonlinear integer programming model is proposed to optimize the total cost of the supply chain as well as its reliability.Due to the complexity and NP-hardness of facility location-inventory and redundancy allocation problems, a multi-objective metaheuristic algorithm based on the simulated annealing algorithm, called AMOSA, was developed to solve the foregoing problem. Finally, to validate and accredit the algorithm, its results are compared with the results of the complete enumeration of all feasible solutions.

کلیدواژه‌ها [English]

  • Supply chain management
  • Location-inventory model
  • Risk pooling strategy
  • redundancy allocation
  • AMOSA algorithm
[1]     Daskin, M.S., Coullard, C.R. and Shen, Z.J.M., (2002). An inventory-location model: Formulation, solution algorithm and computational results, Annals of operations research, 110(1-4), pp.83-106.
[2]     Shen, Z.J.M., Coullard, C. and Daskin, M.S., (2003). A joint location-inventory model, Transportation science, 37(1), pp.40-55.
[3]     Miranda, P.A. and Garrido, R.A., (2004). Incorporating inventory control decisions into a strategic distribution network design model with stochastic demand, Transportation Research Part E: Logistics and Transportation Review, 40(3), pp.183-207.
[4]     Miranda, P.A. and Garrido, R.A., (2006). A simultaneous inventory control and facility location model with stochastic capacity constraints, Networks and Spatial Economics, 6(1), pp.39-53.
[5]     Shu, J. and Sun, J., (2006). Designing the distribution network for an integrated supply chain, Journal of Industrial and Management Optimization, 2(3), p.339.
[6]     Tancrez, J.S., Lange, J.C. and Semal, P., (2012). A location-inventory model for large three-level supply chains, Transportation Research Part E: Logistics and Transportation Review, 48(2), pp.485-502.
[7]     Park, S., Lee, T.E. and Sung, C.S., (2010). A three-level supply chain network design model with risk-pooling and lead times, Transportation Research Part E: Logistics and Transportation Review, 46(5), pp.563-581.
[8]     Shahabi, M., Akbarinasaji, S., Unnikrishnan, A. and James, R., (2013). Integrated inventory control and facility location decisions in a multi-echelon supply chain network with hubs, Networks and Spatial Economics, 13(4), pp.497-514.
[9]     Mousavi, S.M., Alikar, N., Niaki, S.T.A. and Bahreininejad, A., (2015). Optimizing a location allocation-inventory problem in a two-echelon supply chain network: A modified fruit fly optimization algorithm, Computers & Industrial Engineering, 87, pp.543-560.
[10]  Ahmadi-Javid, A. and Hoseinpour, P., (2015). Incorporating location, inventory and price decisions into a supply chain distribution network design problem, Computers & Operations Research, 56, pp.110-119.
[11]  Berman, O., Krass, D. and Menezes, M.B., (2016). Directed assignment vs. customer choice in location inventory models, International Journal of Production Economics, 179, pp.179-191.
[12]  Ahmadi, G., Torabi, S.A. and Tavakkoli-Moghaddam, R., (2016). A bi-objective location-inventory model with capacitated transportation and lateral transshipments, International Journal of Production Research, 54(7), pp.2035-2056.
[13]  Diabat, A., Dehghani, E., Jabbarzadeh, A., (2017). Incorporating location and inventory decisions into a supply chain design problem with uncertain demands and lead times, Journal of Manufacturing Systems, 43, pp.139-149.
[14]  Dai, Z., Aqlan, F., Zheng, X., Gaoc, K., (2018). A location-inventory supply chain network model using two heuristic algorithms for perishable products with fuzzy constraints, Computers & Industrial Engineering, 119, pp.338-352.
[15]  Rezaeenour, J., Hashempoor, M., Akbari, A.M., (2020). A four-echelon supply chain considering economic, social and regions satisfaction goals, Journal of Industrial Engineering Research in Production Systems, 7(15), pp. 199-217.
[16]  Sadri Esfahani, A., Nakhaeinejad, M., Nabizadeh marziani, S., (2020). Inventory Model and Pricing With Linear Functions Price-Dependent Demand, Time-Dependent Holding Cost and Discount Amount (Purchase Cost), Journal of Industrial Engineering Research in Production Systems, 7(15), pp. 305-321
[17]  Snyder, L. V., (2003). Supply chain robustness and reliability: Models and algorithms (PHD Thesis), Dept. of Industrial Engineering and Management Sciences. Evanston, IL, Northwestern University. PhD thesis.
[18]  Snyder, L. V. and M. S. Daskin, (2005). Reliability models for facility location: The expected failure cost case, Transportation Science, 39(3), pp.400-416.
[19]  Snyder, L. V. and M. S. Daskin, (2007). Models for reliable supply chain network design, Critical Infrastructure: Reliability and Vulnerability, A.T. Murray and T.H. Grubesic (eds.), Chapter 13: pp.257-289.
[20]  Snyder, L. V., Scaparra, M.P., M. S. Daskin, Church, R.L., (2006). Planning for disruptions in supply chain networks, Tutorials in Operations Research: Models, Methods, and Applications for Innovative Decision Making ISBN, 13, pp.234–257.
[21]  Zhan, R. L., (2007). Models and algorithms for reliable facility location problems and system reliability optimization. Ph.D. dissertation, UNIVERSITY OF FLORIDA.
[22]  Zhan, R. L., Z. J. M. Shen, et al. (2007). System reliability with location-specific failure probabilities, Working paper Department of Industrial Engineering and Operations Research, University of California at Berkeley.
[23]  Lim, M., Daskin, M.S., A. Bassamboo, (2009), Facility location decisions in supply chain networks with random disruption and imperfect information, working paper, Department of Business Administration, University of Illinois.
[24]  Cui, T., Y. Ouyang, et al., (2010). Reliable facility location design under the risk of disruptions, Operations Research, 58 (4-Part-1), PP. 998-1011.
[25]  Seifbarghy, M., Jalali, S., Rahmati, S.  H., (2012). Reliable Capacitated Facility Location Problem Considering Maximal covering, World Academy of science, Engineering & Technology, 6(1), pp.290-293.
[26]  Shishebori, D., Snyder, L. V., Jabalameli, M. J., (2014). A reliable budget-constrained facility location/network design problem with unreliable facilities, Networks and Spatial Economics, 14(3-4), pp.549-580.
[27]  Qingwei Li and Savachkin, A., (2015). A Fast Tabu Search Algorithm for the Reliable a P-Median Problem, Advances in Global Optimization, pp.417-424.
[28]  Jalali, J., Seifbarghy, M., Sadeghi, J., Ahmadi, S., (2016). Optimizing a bi-objective reliable facility location problem with adapted stochastic measures using tuned-parameter multi-objective algorithms, Knowledge-Based Systems, 95, pp.45-57.
[29]  [29] Farahani, M., Shavandi, H., Rahmani, D., (2017). A Location-Inventory Model Considering a Strategy to Reduce Disruption Risk in Supply Chain by substitutable products, Computers & Industrial Engineering, 108 (C), pp.213-224.
[30]  Fakhrzad, M.B., Talebzadeh, P., Goodarzian, F., (2019). The green Closed-Loop Supply Chain Network Design Considering Supply Centers Reliability Under Uncertainty, Journal of Industrial Engineering Research in Production Systems,  7(14), pp.179-197.
[31]  Chern MS., (1992). On the computational complexity of reliability redundancy allocation in a series system, Operation Research Letters, 11, pp.309–315.
[32]  Fyffe, D. E., Hines, W. W., and Lee, N. K., (1968). System reliability allocation and a computational algorithm, IEEE Transactions on Reliability, 17, pp.64–69.
[33]  Hikita M, Nakagawa Y, Nakashima N, Narihisa H., (1992). Reliability Optimization of Systems by a Surrogate-Constraints Algorithm, IEEE Transactions on Reliability, 41(3), pp.127–39.
[34]  Coit DW, Smith A. E., (1996). Reliability optimization of series-parallel systems using a genetic algorithm, IEEE Transactions on Reliability, 45(2), pp.254–60.
[35]  Coit, D. W., (2003). Maximization of system reliability with a choice of redundancy strategies, IIE Transactions, 35(6), pp.535–544.
[36]  Ramirez-Marquez, J. E., & Coit, D. W., (2004). A heuristic for solving the redundancy allocation problem for multi-state series-parallel systems, Reliability Engineering and System Safety, 83, pp.341–349.
[37]  Kulturel-Konak S, Smith A, Coit D. W., (2003). Efficiently solving the redundancy allocation problem using tabu search, IIE Transactions, 35(6), pp.515–526.
[38]  Zhao J.H., Liuv Z., Dao MT., (2007). Reliability optimization using multi-objective ant colony system approaches, Reliability Engineering System Safety, 92, pp.109–120.
[39]  Taboada HA., Baheranwala F., Coit D.W., Wattanapongsakorn N., (2007). Practical solutions for multi-objective optimization: an application to system reliability design problems, Reliability Engineering System Safety, 92, pp.314–322.
[40]  Tavakkoli-Moghaddam R., Safari J., Sassani F., (2008). Reliability optimization of series– parallel systems with a choice of redundancy strategies using a genetic algorithm, Reliability Engineering & System Safety, 93, pp.550–560.
[41]  Liang YC., Lo M.H., (2010). Multi-objective redundancy allocation optimization using a variable neighborhood search algorithm, Journal of Heuristics, 16, pp.511–535.
[42]  Khalili-Damghani K., Amiri M., (2012). Solving binary-state multi-objective reliability redundancy allocation series-parallel problem using efficient epsilon-constraint, multi-start partial bound enumeration algorithm, and DEA, Reliability Engineering and System Safety, 103, pp.35–44.
[43]  Safari, J., (2012). Multi-objective reliability optimization of series-parallel systems with a choice of redundancy strategies, Reliability Engineering and System Safety, 108, pp.10–20.
[44]  Chambari, A., Rahmati, S. H. A., Najafi, A. A., Karimi, A., (2012). A bi-objective model to optimize reliability and cost of system with a choice of redundancy strategies, Computers and Industrial Engineering, 63, pp.109–119.
[45]  Zoulfaghari, H., Zeinal Hamadani, A., and Abouei Ardakan, M., (2014). Bi-objective redundancy allocation problem for a system with mixed repairable and nonrepairable components, ISA Transactions, 53, pp.17–24.
[46]  Zaretalab A, Hajipour V, Sharifi M, Shahriari, M. R., (2015). A knowledge-based archive multi-objective simulated annealing algorithm to optimize series–parallel system with choice of redundancy strategies, Computers & Industrial Engineering, 80 pp.33–44.
[47]  Sadeghi, J., Sadeghi, S., Niaki, S. T., (2014). A hybrid vendor managed inventory and redundancy allocation optimization problem in supply chain management: An NSGA-II with tuned parameters, Computers & Operations Research, 41, pp.53–64.
[48]  Sabri-Laghaie, K., Karimi-Nasab, M., (2019). Random search algorithms for redundancy allocation problem of a queuing system with maintenance considerations, Reliability Engineering & System Safety, 185, pp. 144-162.
[49]  Mirchandani, P.B., Francis, R.L. (Eds.), (1990). Discrete Location Theory, Wiley, New York.
[50]  Kirkpatrick, C. D. Gellat, M. P. Vecchi, (1983). Optimization by simulated annealing, Scienc, pp. 671-680.
Bandyopadhyay, S., Saha, S., Maulik, U., & Deb, K., (2008). A simulated annealing based multi-objective optimization algorithm: AMOSA, IEEE Transactions on Evolutionary Computation, 12(3), pp. 269–283.