زمانبندی تعمیرات واحدهای تولید نیرو در بازار برق با استفاده از رویکرد برنامه‌ریزی تصادفی دومرحله‌ای تحت ریسک اختلال در تسهیلات نیروگاهی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه مهندسی صنایع، دانشکده مهندسی صنایع، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

2 دانشجوی دکتری مهندسی صنایع، دانشکده مهندسی صنایع، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

10.22084/ier.2021.3924

چکیده

صنعت برق از دو دهه‌ گذشته از حالت انحصاری و نظارت مستقیم دولت خارج شده و در جهت خصوصی‌سازی حرکت نموده است. لذا، تصمیم‌گیری درخصوص زمان‌بندی خروج نیروگاه‌ها از بازار برق، به یکی از مسائل مهم شبکه تبدیل شده که بر قابلیت اطمینان شبکه تأثیرگذار می‌باشد. بهره‌بردار مستقل سیستم به‌عنوان یک نهاد حاکمیتی، مسئولیت حفظ سطح مطلوب قابلیت اطمینان شبکه را با توجه به آرایش‌های پیشنهادی خروج نیروگاه‌ها از بازار برعهده دارد. در اغلب مدل‌های کلاسیک، فرض می‌شود که نیروگاه‌ها همواره طبق برنامه کار خواهند کرد، درحالی‌که در واقعیت نیروگاه‌ها در معرض اختلال می‌باشند. در این مقاله، مسأله زمان‌بندی تعمیرات نیروگاه‌ها با رویکرد برنامه‌ریزی تصادفی دو-مرحله‌ای مبتنی ‌بر سناریو تحت ریسک خرابی نیروگاه‌ها درنظر گرفته شده است. یک سناریو به‌عنوان رویدادی درنظر گرفته می‌شود که برخی از نیروگاه‌ها به‌دلیل اختلال از کار افتاده‌اند و سایرشان می‌توانند خدمات ارائه دهند. در این مسأله، زمان‌بندی تعمیرات در مرحله‌ی اول و تصمیمات مرتبط با میزان عرضه در مرحله‌ی دوم تعیین می‌شوند. سپس بهره‌بردار سیستم پس از بررسی شاخص‌ قابلیت اطمینان، در صورت نیاز به زمان‌بندی مجدد، سیگنال‌های اصلاحی را براساس سهم مشارکت نیروگاه‌‎ها در کاهش قابلیت اطمینان محاسبه و ارسال می‌نماید. سپس شرکت تولید زمان‌بندی بازبینی شده خود را مجدداً برای بهره‌بردار ارسال می‌کند. این فرایند تکراری تا زمان حصول قابلیت اطمینان مطلوب ادامه خواهد داشت. به‌منظور حل مسأله پیشنهادی، ترکیب الگوریتم حرکت تجمعی ذرات و سیمپلکس پیشنهاد شده است. ارزیابی‌های عملکردی مدل بر روی یکی از شبکه‌های استاندارد IEEE-RTS انجام و نتایج گزارش شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Maintenance scheduling of generation companies in electricity market based on two-stage stochastic programming approach under the risk of power unit’s disruption

نویسندگان [English]

  • Emad Roghanian 1
  • Atefeh Hassanpour 2
1 Associate Professor, Department of Industrial Engineering, Faculty of Industrial Engineering, Khajeh Nasir al-Din Tusi University of Technology, Tehran, Iran
2 PhD Student in Industrial Engineering, Faculty of Industrial Engineering, Khajeh Nasir al-Din Tusi University of Technology, Tehran, Iran
چکیده [English]

Since the past two decades, the electricity industry has begun to change from monopolized and under the direct supervision of the state to privatization. Therefore, the power unit’s outage scheduling in the electricity market has become one of the most important issues that affect system reliability. The independent system operator, as a public authority, is responsible for maintaining the desired level of network reliability concerning the proposed arrangements of outages. In most classical models assumed that units will always operate as schedules, while in the real world, units are under the risk of disruption. In this paper, a generation maintenance scheduling problem based on a two-stage stochastic programming approach under the risk of the units’ failure is considered. A scenario is considered as an event where some of the generation units have failed due to the disruption and, the others can provide service. In the first stage, maintenance scheduling decisions are set. Then, generation amounts are made in the second stage. Then the independent operator system determines the corrective signals based on the power units’ contribution in decreasing the reliability index. The generation company reviews and modifies its maintenance scheduling and sends them back to the independent system operator. This iterative procedure will continue until the optimal reliability level reach. To solve the proposed model, a combination method consisting of particle swarm optimization and simplex is proposed. The capability of the proposed algorithm is evaluated on an IEEE reliability test system and the results are reported.

کلیدواژه‌ها [English]

  • Generation Maintenance Heduling
  • Power network reliability
  • Risk of Power Unit’s
  • Disruption
  • Corrective signal
[1]    Federal energy regulatory commission. (2003). State of the markets report.
[2]    Christopher Weare. (2003). The California Electricity Crisis: Causes and Policy Options.
[3]    Australian energy market operator. (2010). AN INTRODUCTION TO AUSTRALIA’S NATIONAL ELECTRICITY MARKET.
[4]    Yamayee, Z. A. (1982). Maintenance Scheduling: Description, Literature Survey, and Interface with Overall Operations Scheduling. IEEE Transactions on Power Apparatus and Systems PAS, 101(8): 2770-2779.
[5]    Kralj, Branimir L., and Radivoj Petrović. (1988). Optimal Preventive Maintenance Scheduling of Thermal Generating Units in Power Systems —a Survey of Problem Formulations and Solution Methods. European Journal of Operational Research, 35(1): 1-15.
[6]    Dahal, Keshav. (2004). A Review of Maintenance Scheduling Approaches in Deregulated Power Systems." International Conference on Power Systems.
[7]    Khalid, A, and Karamitsos Ioannis. (2012). A Survey of Generator Maintenance Scheduling Techniques.
[8]    Froger, Aurélien, Michel Gendreau, Jorge E. Mendoza, Éric Pinson, and Louis-Martin Rousseau. (2016). Maintenance Scheduling in the Electricity Industry: A Literature Review. European Journal of Operational Research, 251(3): 695-706.
[9]    Billinton, R., and A. Abdulwhab. (2003). Short-Term Generating Unit Maintenance Scheduling in a Deregulated Power System Using a Probabilistic Approach. IEE Proceedings - Generation, Transmission and Distribution, 150(4): 463-468.
[10] Fotouhi Ghazvini, Mohammad Ali, Bruno Canizes, Zita Vale, and Hugo Morais. (2013). Stochastic Short-Term Maintenance Scheduling of Gencos in an Oligopolistic Electricity Market. 101(3):37-46.
[11] Wang, Y., Z. Li, M. Shahidehpour, L. Wu, C. X. Guo, and B. Zhu. (2016). Stochastic Co-Optimization of Midterm and Short-Term Maintenance Outage Scheduling Considering Covariates in Power Systems. IEEE Transactions on Power Systems, 31(6):4795-4805.
[12] Reihani, Ehsan, Ali Sarikhani, Moez Davodi, and Mehdi Davodi. (2012). Reliability Based Generator Maintenance Scheduling Using Hybrid Evolutionary Approach. International Journal of Electrical Power & Energy Systems, 42(1): 434-439.
[13] Bozorgi, Ali, Mir Mohsen Pedram, and G. Reza Yousefi. (2016). Unit Maintenance Scheduling: A Robust Model, Based on Fuzzy Cost Factors and Peak Loads." International Journal of Electrical Power & Energy Systems, 79: 142-149.
[14] Kamali, R., P. Khazaei, P. Banizamani, and S. Saadatian. (2018). Stochastic Unit Generation Maintenance Scheduling Considering Renewable Energy and Network Constraints. 2018 World Automation Congress (WAC).
[15] Manshadi, S. D., and M. E. Khodayar. (2018). Risk-Averse Generation Maintenance Scheduling with Microgrid Aggregators. IEEE Transactions on Smart Grid, 9(6): 6470-6479.
[16] Mazidi, P, Yaser Tohidi, Andres Ramos, and Miguel A. Sanz-Bobi. (2018). Profit-Maximization Generation Maintenance Scheduling through Bi-Level Programming." European Journal of Operational Research, 264(3): 1045-1057.
[17] Bao, Z., C. Gui, and X. Guo. (2018). Short-Term Line Maintenance Scheduling of Distribution Network with PV Penetration Considering Uncertainties. IEEE Access, 6: 21-30.
[18] Ge, Xiaolin, Shu Xia, and Xiangjing Su. (2018). Mid-Term Integrated Generation and Maintenance Scheduling for Wind-Hydro-Thermal Systems. International Transactions on Electrical Energy Systems.
[19] Zhong, Shuya, Athanasios A. Pantelous, Mark Goh, and Jian Zhou. (2019). A Reliability-and-Cost-Based Fuzzy Approach to Optimize Preventive Maintenance Scheduling for Offshore Wind Farms. Mechanical Systems and Signal Processing, 124(3):643-663.
[20] Yildirim, M., N. Z. Gebraeel, and X. A. Sun. (2019). Leveraging Predictive Analytics to Control and Coordinate Operations, Asset Loading and Maintenance." IEEE Transactions on Power Systems, 101(4).
[21] Latify, M. A, Hossein Seifi, and Habib Rajabi Mashhadi. (2013). An Integrated Model for Generation Maintenance Coordination in a Restructured Power System Involving Gas Network Constraints and Uncertainties. International Journal of Electrical Power & Energy Systems, 46: 425-440.
[22] Ji, G., W. Wu, and B. Zhang. (2016). Robust Generation Maintenance Scheduling Considering Wind Power and Forced Outages. IET Renewable Power Generation, 10(5): 634-641.
[23] Wang, Y., Z. Li, M. Shahidehpour, L. Wu, C. X. Guo, and B. Zhu. (2016). Stochastic Co-Optimization of Midterm and Short-Term Maintenance Outage Scheduling Considering Covariates in Power Systems. IEEE Transactions on Power Systems, 31(6): 4795-4805.
[24] Helseth, A., M. Fodstad, and B. Mo. (2018). Optimal Hydropower Maintenance Scheduling in Liberalized Markets. IEEE Transactions on Power Systems, 33(6): 6989-6998.
[25] Basçiftci, Beste, Shabbir Ahmed, Nagi Gebraeel, and Murat Yildirim. (2017). Integrated Generator Maintenance and Operations Scheduling under Uncertain Failure Times, 76(2):117-132.
[26] Bagheri, Bahareh, and Nima Amjady. (2018). Stochastic Multiobjective Generation Maintenance Scheduling Using Augmented Normalized Normal Constraint Method and Stochastic Decision Maker: Stochastic Multi-Objective Generation Maintenance Scheduling. International Transactions on Electrical Energy Systems, 29(2):27-38.
[27] Sadeghian, Omid, Amin Mohammadpour, and Behnam Mohammadi-ivatloo. (2019). Risk-Based Stochastic Short-Term Maintenance Scheduling of Gencos in an Oligopolistic Electricity Market Considering the Long-Term Plan. Electric Power Systems Research.
[28] Fotouhi Ghazvini, Mohammad Ali, and S. M. Moghaddas-Tafreshi. (2009). A Game Theoretic Framework for Generation Maintenance Scheduling in Oligopolistic Electricity Markets.
[29] Fotouhi Ghazvini, Mohammad Ali, and Abouzar Estebsari. (2011) Market Power Appearance through Game Theoretic Maintenance Scheduling of Distributed Generations. 29( 6): 512-537.
[30] Min, C. G., M. K. Kim, J. K. Park, and Y. T. Yoon. (2013) Game-Theory-Based Generation Maintenance Scheduling in Electricity Markets. Energy.(55): 310-318.
[31] Xu, Bo, Shenzhi Xu, and Yumin Zhang.  (2019).  "Short-Term Power System Maintenance Scheduling with Imperfect Repair."  IOP Conference Series: Materials Science and Engineering 486: 012144.
[32] Eberhart, R. C., & Kennedy, J. (1995). “A new optimizer using particle swarm theory.” Paper presented at the Proceedings of the sixth international symposium on micro machine and human science.
[33] Shahidehpour, M., and Marwali Mk. (2000). Maintenance Scheduling in Restructured Power Systems. doi:10.1007/978-1-4615-4473-9.