مدل ریاضی دو هدفه برای مسئله زمان‌بندی کامیون در یک سیستم انبار متقاطع با درنظر گرفتن ترتیب توالی و برون‌سپاری محصولات تحت شرایط عدم‌قطعیت فازی بازه‌ای

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه شاهد، تهران، ایران

2 دانشیار، گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه شاهد، تهران، ایران

10.22084/ier.2020.21225.1941

چکیده

در این مقاله یک مسئله زمان‌بندی کامیون ورودی و خروجی در یک سیستم چندین درب انبارمتقاطع با فرض موعد تحویل برای کامیون‌های خروجی به‌عنوان یک محدودیت سخت بررسی می‌شود که برای رعایت زمان موعد تحویل، رضایت مشتریان و افزایش کیفیت محصولات بخشی از محصولات در داخل کامیون‌های برون‌سپاری قرار داده می‌شوند. مسئله موردبررسی به‌صورت یک مسئله برنامه‌ریزی ریاضی دو هدفه فرموله می‌شود که اهداف آن شامل به حداقل رساندن هزینه عملیاتی و حداکثر کردن کیفیت محصولات ارسالی در انبارمتقاطع است. در این تحقیق توالی کامیون‌ها در پشت درب‌های ورودی و خروجی در انبارمتقاطع در نظر گرفته می‌شود. همچنین ترتیب توالی محصولات در تخلیه کامیون‌های ورودی و بارگیری کامیون‌های خروجی نیز موردبررسی قرار می‌گیرد. یک مدل برنامه‌ریزی مختلط عددصحیح برای این مسئله پیشنهادی فرمول‌بندی می‌شود. ازآنجایی‌که در دنیای واقعی عدم قطعیت یک امر اجتناب‌ناپذیر است. بنابراین، جهت حل مدل مذکور از یک روش بهبودیافته جدید فازی بازه‌ای IVF-SO استفاده می‌شود. در این تحقیق جهت نشان دادن کارایی مدل و رویکرد ارائه‌شده، یک مثال دنیای واقعی برای توجیه عملکرد ارائه می‌شود. نتایج عددی حاصل از مطالعه موردی انجام‌شده، برتری رویکرد پیشنهادی را نسبت به روش‌های قبل نشان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

A Bi-Objective Mathematical Programming Model For Truck Scheduling Problem In A Cross-Dock System Considering The Sequencing And Outsourcing Of Products Under Interval-Valued Fuzzy Uncertainty Conditions

نویسندگان [English]

  • َEhsan Mirzaei 1
  • Seyed Meysam Mousavi 2
1 Department of Industrial Engineering, Faculty of Engineering, Shahed University
2 Department of Industrial Engineering, Faculty of Engineering, Shahed University, Tehran, Iran
چکیده [English]

In this paper, an inbound and outbound truck scheduling problem is investigated in a multi-door cross-dock system considering due date assumptions for outbound trucks as a strict constraint. Part of the products is placed inside outsourcing trucks to ensure timely delivery, customer satisfaction, and product quality enhancement. The problem under consideration is formulated as a bi-objective mathematical programming problem whose objectives are to minimize operational costs and maximize the quality of products delivered in cross-dock. In this paper, the sequence of trucks behind the inbound and outbound doors in the cross-dock is also regarded. A mixed-integer programming model is formulated for the proposed problem. Since the real-world uncertainty is inevitable; therefore, an improved IVF-SO fuzzy method is presented in this paper to solve the model. In this paper, to illustrate the efficiency of the proposed model and also the introduced approach, a real-world example is presented to justify the performance. The numerical results of the case study demonstrate the superiority of the proposed approach over previous methods.

کلیدواژه‌ها [English]

  • Cross-dock
  • Scheduling
  • Bi-objective
  • Due date
  • Product sequence
  • Outsourcing
[1] Vahdani, B., Zandieh, M. (2010). “Scheduling trucks in cross-docking systems: Robust meta-heuristics”, Computers & Industrial Engineering, 58(1): 12-24.
[2] Kim, C., Yang, K.H., Kim J. (2008). “A strategy for third-party logistics systems: A case analysis using the blue ocean strategy”. Omega, 36(4): 522-534.
[3] Boysen, N., Briskorn, D., Tschöke, M. (2013). “Truck scheduling in cross-docking terminals with fixed outbound departures”. OR spectrum, 35(2): 479-504.
[4] Van Belle, J., Valckenaers, P., Cattrysse, D. (2012). “Cross-docking: State of the art”. Omega, 40(6): 827-846.
[5] Agustina, D., Lee, C., Piplani R. (2010). “A review: mathematical modles for cross docking planning”. International Journal of Engineering Business Management, 2(2): 47-54.
[6] Lim, A., Ma, H., Miao, Z. (2006). Truck dock assignment problem with operational time constraint within crossdocks. in International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Springer.
[7] Liao, T., Egbelu, P., Chang,  P. (2013).” Simultaneous dock assignment and sequencing of inbound trucks under a fixed outbound truck schedule in multi-door cross docking operations”. International Journal of Production Economics, 141(1): 212-229.
[8] Chen, F., Lee, C.-Y. (2009). “Minimizing the makespan in a two-machine cross-docking flow shop problem”. European Journal of Operational Research, 193(1): 59-72.
[9] Gelareh, S. et al. (2016). “A branch-and-cut algorithm for the truck dock assignment problem with operational time constraints”. European Journal of Operational Research, 249(3): 1144-1152.
[10] Nassief, W., Contreras, I., Jaumard, B. (2018). “A comparison of formulations and relaxations for cross-dock door assignment problems”. Computers & Operations Research, 94: 76-88.
[11] Gelareh, S., Glover, F., Guemri, O., Hanafi, S., Nduwayo, P., & Todosijević, R. (2020). “A comparative study of formulations for a cross-dock door assignment problem”. Omega, 91: 102-115.
[12] Madani-Isfahani, M., Tavakkoli-Moghaddam, R., Naderi, B. (2014). “Multiple cross-docks scheduling using two meta-heuristic algorithms”. Computers & Industrial Engineering, 74: 129-138.
[13] Shahmardan, A., Sajadieh, M.S. (2020). “Truck scheduling in a multi-door cross-docking center with partial unloading–Reinforcement learning-based simulated annealing approaches”. Computers & Industrial Engineering, 139: 106134.
[14] Boysen, N., Fliedner, M. (2010). “Cross dock scheduling: Classification, literature review and research agenda”. Omega, 38(6): 413-422.
[15] Grangier, P., et al. (2017). “A matheuristic based on large neighborhood search for the vehicle routing problem with cross-docking”. Computers & Operations Research, 84: 116-126.
[16] Fonseca, G.B., Nogueira, T.H., Ravetti, M.G. (2019). “A hybrid Lagrangian metaheuristic for the cross-docking flow shop scheduling problem”. European Journal of Operational Research, 275(1): 139-154.
[17] Konur, D., Golias, M.M. (2013). “Analysis of different approaches to cross-dock truck scheduling with truck arrival time uncertainty”. Computers & Industrial Engineering, 65(4): 663-672.
[18] Van Belle, J., et al. (2013). “A tabu search approach to the truck scheduling problem with multiple docks and time windows”. Computers & Industrial Engineering, 66(4): 818-826.
[19] Miao, Z., Lim, A., Ma, H. (2009). “Truck dock assignment problem with operational time constraint within crossdocks”. European journal of operational research, 192(1): 105-115.
[20] Fanti, M.P., Stecco, G., Ukovich, W. (2014). “Scheduling internal operations in post-distribution cross docking systems”. IEEE Transactions on Automation Science and Engineering, 13(1): 296-312.
[21] Rezaei, S., Kheirkhah, A. (2017). “Applying forward and reverse cross-docking in a multi-product integrated supply chain network”. Production Engineering, 11(4-5): 495-509.
]22[ محتشمی، علی، نجفی، علی، امیری، مقصود، ایرج‌پور، علیرضا. (1398). "طراحی مدل ریاضی مسیریابی‌سبز در سیستم‌های بارانداز متقاطع چندگانه با رویکرد کاهش گاز دی‌اکسیدکربن"، نشریه پژوهش‌های مهندسی صنایع در سیستم‌های تولید، 7(14): 59-77.
[23] Corsten, H., Becker, F., Salewski, H. (2020). “Integrating truck and workforce scheduling in a cross-dock: analysis of different workforce coordination policies”. Journal of Business Economics, 90(2): 207-237.
[24] Ardakani, A., Fei, J., Beldar, P. (2020). “Truck-to-door sequencing in multi-door cross-docking system with dock repeat truck holding pattern”. International Journal of Industrial Engineering Computations, 11: 201-220.
[25] Sakawa, M., Kato, K., Nishizaki, I. (2003). “An interactive fuzzy satisficing method for multiobjective stochastic linear programming problems through an expectation model”. European journal of operational research, 145(3): 665-672.
[26] Demirli, K., Yimer, A.D. (2008). “Fuzzy scheduling of a build-to-order supply chain”. International Journal of Production Research, 46(14): 3931-3958.
[27] Petrovic, D. (2001). “Simulation of supply chain behaviour and performance in an uncertain environment”. International Journal of Production Economics, 71(1-3): 429-438.
[28] Dubois, D., Prade, H. (1994). “Fuzzy sets/spl minus/a convenient fiction for modeling vagueness and possibility”. IEEE Transactions on Fuzzy Systems, 2(1): 16-21.
[29] Zadeh, L.A. (1965). “Fuzzy sets”. Information and control, 8(3): 338-353.
[30] Bellman, R.E., Zadeh, L.A. (1970). “Decision-making in a fuzzy environment”. Management science, 17(4): B-141-B-164.
[31] Herrera, F., Martinez, L. (2000). “An approach for combining linguistic and numerical information based on the 2-tuple fuzzy linguistic representation model in decision-making”. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 8(05): 539-562.
[32] Dubois, D., et al. (2004). “Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities”. Reliable computing, 10(4): 273-297.
[33] Lai, Y.-J., Hwang, C.-L. (1992). “A new approach to some possibilistic linear programming problems”. Fuzzy sets and systems, 49(2): 121-133.
[34] Liang, T.-F. (2006). “Distribution planning decisions using interactive fuzzy multi-objective linear programming”. Fuzzy Sets and Systems, 157(10): 1303-1316.
[35] Liang, T.-F. (2008). “Integrating production-transportation planning decision with fuzzy multiple goals in supply chains”. International Journal of Production Research, 46(6): 1477-1494.
[36] Bharati, S.K., Singh, S.R. (2019). “Solution of multiobjective linear programming problems in interval-valued intuitionistic fuzzy environment”. Soft Computing, 23(1): 77-84.
[37] Yin, D. (2018). “Application of interval valued fuzzy linear programming for stock portfolio optimization”. Applied Mathematics, 9(2): 101-113.
[38] Khalifa, H., Al-Shabi, M. (2018). “On solving stock portfolio problem through interval-valued fuzzy linear programming”. Asian Journal of Science and Technology, 9(10): 8961-8969.
[39] Chatterjee, K., Kar, S. (2016). “Multi-criteria analysis of supply chain risk management using interval valued fuzzy TOPSIS”. Opsearch, 53(3): 474-499.
[40] Mohammadi, M., Dehbari, S., Vahdani, B. (2014). “Design of a bi-objective reliable healthcare network with finite capacity queue under service covering uncertainty”. Transportation Research Part E: Logistics and Transportation Review, 72: 15-41.
[41] Guijun, W., Xiaoping, L. (1998). “The applications of interval-valued fuzzy numbers and interval-distribution numbers”. Fuzzy Sets and Systems, 98(3): 331-335.
[42] Javanmard, S., Vahdani, B., Tavakkoli-Moghaddam, R. (2014). “Solving a multi-product distribution planning problem in cross docking networks: An imperialist competitive algorithm”. The International Journal of Advanced Manufacturing Technology, 70(9-12): 1709-1720.
[43] Mousavi, S. M., Vahdani, B., Tavakkoli-Moghaddam, R., & Hashemi, H. (2014). “Location of cross-docking centers and vehicle routing scheduling under uncertainty: a fuzzy possibilistic–stochastic programming model”. Applied Mathematical Modelling, 38(7-8): 2249-2264.
[44] Shadman, A., Bozorgi-Amiri, A., Rahmani, D. (2017). “A mathematical model for vehicle routing and scheduling problem with cross-docking by considering risk”. International Journal of Industrial Engineering & Production Research, 28(2): 189-199.
[45] Mousavi, S.M., Vahdani, B. (2017). “A robust approach to multiple vehicle location-routing problems with time windows for optimization of cross-docking under uncertainty”. Journal of Intelligent & Fuzzy Systems, 32(1): 49-62.
[46] Khorshidian, H., Shirazi, M.A., Ghomi, S. F. (2019). “An intelligent truck scheduling and transportation planning optimization model for product portfolio in a cross-dock”. Journal of Intelligent Manufacturing, 30(1): 163-184.
]47[ عظیمی، فرزاد، موسوی، سید میثم، رجب‌زاده، محسن. (1398). "یک مدل برنامه‌ریزی خاکستری برای اسقاط یا تجاری‌سازی مجدد کالاها در عملیات لجستیک معکوس با درنظر گرفتن انبارمتقاطع". نشریه پژوهش‌های مهندسی صنایع در سیستم‌های تولید، 7(14): 163-177.
[48] Rahbari, A., Nasiri, M. M., Werner, F., Musavi, M., Jolai, F. (2019). “The vehicle routing and scheduling problem with cross-docking for perishable products under uncertainty: Two robust bi-objective models”. Applied Mathematical Modelling, 70: 605-625.
[49] Molavi, D., Shahmardan, A., Sajadieh, M.S. (2018). “Truck scheduling in a cross docking systems with fixed due dates and shipment sorting”. Computers & Industrial Engineering, 117: 29-40.
[50] Mousavi, S.M., Tavakkoli-Moghaddam, R., Jolai, F. (2013). “A possibilistic programming approach for the location problem of multiple cross-docks and vehicle routing scheduling under uncertainty”. Engineering Optimization, 45(10): 1223-1249.
[51] Zadeh, L. (1968). “Fuzzy sets. In/ormotr on and Control, 8: 338-353. Probability measures of fuzzy events. Journal of Mathematical Analysis and Applications, 101427427. 1973”. Outline of a new approach to the analysis of complex or imprecise concepts. IEEE Transactions: Systems, Man and Cybernetics, SMC-3, 1965: 28-44.
[52] Zadeh, L.A. (1976). “A fuzzy-algorithmic approach to the definition of complex or imprecise concepts”. International Journal of Man-machine studies, 8(3): 249-291.
[53] Chen, S.-J., Chen, S.-M. (2003). “Fuzzy risk analysis based on similarity measures of generalized fuzzy numbers”. IEEE Transactions on fuzzy systems, 11(1): 45-56.
[54] Gorzałczany, M.B. (1987). “A method of inference in approximate reasoning based on interval-valued fuzzy sets”. Fuzzy sets and systems, 21(1): 1-17.
[55] Yao, J.-S., Lin, F.-T. (2002). “Constructing a fuzzy flow-shop sequencing model based on statistical data”. International journal of approximate reasoning, 29(3): 215-234.
[56] Vidal, C.J., Goetschalckx, M. (2001). “A global supply chain model with transfer pricing and transportation cost allocation”. European Journal of Operational Research, 129(1): 134-158.
[57] Jiménez, M., et al. (2007). “Linear programming with fuzzy parameters: an interactive method resolution”. European Journal of Operational Research, 177(3): 1599-1609.
[58] Zimmermann, H.-J. (1978). “Fuzzy programming and linear programming with several objective functions”. Fuzzy sets and systems, 1(1): 45-55.
[59] Pishvaee, M.S., Torabi, S.A. (2010). “A possibilistic programming approach for closed-loop supply chain network design under uncertainty”. Fuzzy sets and systems, 161(20): 2668-2683.
[60] Selim, H., Ozkarahan, I. (2008). “A supply chain distribution network design model: an interactive fuzzy goal programming-based solution approach”. The International Journal of Advanced Manufacturing Technology, 36(3-4): 401-418.