زمانبندی تولید و بازرسی تجهیزات با در نظر گرفتن هزینه‌های زیست‌محیطی ناشی از افت تجهیزات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه الزهراء

2 دانشجوی دکتری مهندسی صنایع، دانشگاه الزهراء

چکیده

استفاده‏‌ی مداوم از تجهیزات و سیستم‏ ها، آن‏ها را در معرض خرابی (مانند کهنگی، سایش، خوردگی و خزش) قرار می‌دهد. آثار خرابی صرفاً محدود به کاهش کارایی، کاهش قابلیت اطمینان و کاهش عمر سیستم نبوده و می‏ تواند منجر به تخریب و آسیب‏ های زیست‌محیطی نیز گردد. بررسی اثرات نامطلوب افت سیستم‏ها منجر به شکل‏ گیری مطالعات گسترده در حوزه‏‌ی استراتژی‏‌های نگهداری و تعمیر مبتنی بر پایش وضعیت گشته است. یکی از رویکردهای موردتوجه در این حوزه بحث حفظ و نگهداری و تعمیر بهینه براساس وضعیت سلامت و کارکرد سیستم است که با کنترل اثرات نامطلوب افت سیستم بر محیط‌زیست، هزینه ‏های سربار ناشی از جریمه ‏های مرتبط را کاهش می‌دهد. هدف این پژوهش بررسی و مدل‌سازی سیاست نگهداری و تعمیر بهینه شامل تعیین زمان‏ بهینه‏ ی بازرسی‏‌ها با هدف کمینه ‏سازی متوسط هزینه کل در واحد زمان در شرایط عدم قطعیت است. در این مقاله متغیرهای مدت‌زمان از ابتدای دوره تا رسیدن به سطح هشدار، مدت‌زمان از لحظه عبور از سطح هشدار تا وقوع خرابی و مدت‌زمان از لحظه شناسایی عبور سیستم‏ از سطح هشدار (با انجام فرآیند بازرسی) تا آغاز عملیات نگهداری و تعمیر پیشگیرانه، به‌صورت متغیرهای تصادفی در نظر گرفته شده و اثرات آن‏ها موردمطالعه قرار گرفته است. مدل توسط سه روش جستجوی مستقیم نلدر مید، الگوریتم ژنتیک و الگوریتم PSO برای یک مثال عددی حل‌شده و زمان‏‌های بهینه بازرسی به‌دست‌آمده است.

کلیدواژه‌ها


عنوان مقاله [English]

Production and Equipment Detection Scheduling with Environmental Degradation Costs Caused by System Deteriorations

نویسندگان [English]

  • Parviz Fattahi 1
  • Saeideh Asadzadeh 2
  • Sanaz Sheikhtajain 2
  • Samaneh Babaeimorad 2
1 Professor, Department of Industrial Engineering, Alzahra University
2 Department of Industrial Engineering, Alzahra University
چکیده [English]

Machines and equipment continuous operation exposes them to failure (such as aging, wear, corrosion and creep). Consequences of such deteriorations are not limited to efficiency, reliability and life cycle reduction, they also may lead to environmental degradation. Investigating adverse effects of system’s failures have led to many academic studies on condition-based maintenance strategies. One of prominent approaches in this area is   maintenance policy based on the system’s performance and status, which reduces the overhead costs of the associated penalties by controlling environmental damages. The purpose of this study is to model an optimal maintenance policy including production and inspection periods scheduling with minimal average total cost, under uncertainty conditions. In this article, the threshold exceeding period, time to failure from exceeding threshold point and the delay time to start maintenance activities are considered random variables and their effects have been studied. Numerical examples of the proposed maintenance model have been solved by Nelder–Mead, PSO and Genetic algorithms, and optimal inspection times are computed. Sensitivity analyses have been done numerically to study the effect of changes of different parameters on the optimal inspection times.

کلیدواژه‌ها [English]

  • Environmental hazards
  • Scheduling
  • Direct search method
  • Nelder–Mead
  • optimization Method
  • Genetic algorithm
  • PSO algorithm
[1] Bonissone, P., Goebel, K. (2001). “Soft computing applications in equipment maintenance and service”, Proceedings joint 9th IFSA world congress and 20th NAFIPS international conference, Canada, 2752–2757. IEEE. https://doi.org/10. 1109/NAFIPS.2001.943660.
[2] Bengtsson, M. (2004). Condition Based Maintenance Systems an Investigation of Technical Constituents and Organizational Aspects. Mlardalen University Licentiate Thesis.
[3] Hashemian, HM., Bean, WC. (2011). “State-of-the-art predictive maintenance techniques”, IEEE Transactions on Instrumentation and Measurement, 60(10): 3480-3492
[4] Hoang, A., Do, P. and Iung, B. (2017). “Energy efficiency performance based prognostics for aided maintenance decision-making: Application to a manufacturing platform”, Journal of Cleaner Production, 142: 2838–2857.
[5] Martorell, S., Villanueva, J. F., Carlos S., et al. (2005). “RAMS+C informed decision-making with application to multi-objective optimization of technical specifications and maintenance using genetic algorithms”, Reliability Engineering & System Safety, 87(1): 65-75.
[6] Yan, J., Hua, D. (2010). “Energy consumption modeling for machine tools after preventive maintenance”, in Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management Macao, China, (IEEM ’10), 2201-2205.
[7] Shin, J., Jun, H., (2015). “On condition based maintenance policy”, Journal of Computational Design and Engineering, 2: 119-127.
[8] Castanier, B., Grall, A., B´erenguer, C. (2005). “A condition-based maintenance policy with non-periodic inspections for a two unit series system”, Reliability Engineering and System Safety, 87(1): 109–120.
[9] Yang, L., Ma, X., & Zhao, Y. (2017). “A condition-based maintenance model for a three state system subject to degradation and environmental shocks”, Computers & Industrial Engineering, 105: 210-222.
[10] Van Horenbeek, A., Kellens, K., Pintelon, L., Duflou, J. R. (2014). “Economic and environmental aware maintenance optimization”, 21st CIRP Conference on Life Cycle Engineering, Norway, 343–348.
[11] Chelbi, A., Ait-Kadi, D. (1999). “An optimal inspection strategy for randomly failing equipment”, Reliability Engineering and System Safety, 63(2): 127–131.
[12] Zhou, X., Xi, L., Lee, J. (2007). “Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradation”, Reliability Engineering & System Safety, 92(4): 530-534.
[13] Chouikhi, H., Khatab, A., & Rezg, N. (2012). “A condition-based maintenance policy for a production system under excessive environment degradation”, Journal of Intelligent Manufacturing, 25(4): 727-737.
[14] Tlili, L., Radhoui, M., Chelbi, A. (2015). “Condition-based maintenance strategy for production systems generating environmental damage”, Mathematical Problems in Engineering,1-12.
[15] Vassiliadis, C. G., and Pistikopoulos, E. N. (2000). “Maintenance-based strategies for environmental risk minimization in the process industries”, Journal of Hazardous Materials, 71(1–3): 481–501.
[16] Kopnov, V.A. (1999). “Optimal degradation processes control by two level policies”, Reliability Engineering and System Safety, 66(1): 1-11.
[17] Zhao, X., He, S., He, Z., Xie, M. (2018). “Optimal condition-based maintenance policy with delay for systems subject to competing failures under continuous monitoring”, Computers & Industrial Engineering, 124: 535-544.
[18] Bérenguer, C., Grall, A., Dieulle, L., Roussignol, M. (2003). “Maintenance policy for a continuously monitored deteriorating system”, Probability in the Engineering and Informational Sciences, 17(02): 235-250.
[19] Meier-Hirmer, C., Riboulet, G., Sourget, F., and Roussignol, M. (2009). “Maintenance optimization for a system with a gamma deterioration process and intervention delay: application to track maintenance”, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 223(3): 189-198
[20] Yang, L., Ma, X., Zhai, Q., Zhao, Y. (2016). “A delay time model for a mission-based system subject to periodic and random inspection and postponed replacement.”, Reliability Engineering & System Safety, 150: 96-104.
[21] He, K., Maillart, L. M., and Prokopyev, O. A. (2017). “Optimal planning of unpunctual preventive maintenance”. IISE Transactions, 49(2): 127-143
[22] Kelley, C.T. (1999). Iterative Methods for Optimization, 1st Edition, Society for Industrial and Applied Mathematics.
]23[ البرزی، محمود، (1388). الگوریتم ژنتیک، موسسه انتشارات علمی دانشگاه صنعتی شریف، تهران، چاپ اول: سال 1388.