[1] Pinedo, M., (2001). Scheduling: Theory, Algorithms, and Systems. Prentice-Hall Inc., Englewood Cliffs, N.J.
[2] Kim, D-W., Kim, K-H., Jang, W., Chen, F., (2002). “Unrelated parallel machine scheduling with setup times using simulated annealing”. Robotics and ComputerIntegrated Manufacturing, 18: 223-231.
[3] Vredeveld, T., Hurkens, C., (2002). “Experimental comparison of approximation algorithms for scheduling unrelated parallel machines”. Informs Journal on Computing, 14(2): 175-189.
[4] Rogendran, R., Subur, F., (2004). “Unrelated parallel machine scheduling with job splitting”. IIE Transaction, 36: 356-372.
[5] Tavakkoli-Moghaddam, R., Taheri, F., Bazzazi, M., Izadi, M., Sassani, F., (2009). “Design of a genetic algorithm for bi-objective unrelated parallel machines scheduling with sequence-dependent setup times and precedence constraints”. Computers & Operations Research, 36: 3224-3230.
[6] Balin, S., (2011). “Non-identical parallel machine scheduling using genetic algorithm”. Expert System with Applications, 38: 6814-6821.
[7] Lin, Y. K., Pfund, M. E., Fowler, J. W., (2011). “Heuristics for minimizing regular performance measures in unrelated parallel machine scheduling problem”. Computers & Operations Research, 38(6): 901–916.
[8] Vallada, E., Ruiz, R., (2011). “A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times”. European Journal of Operational Research, 211: 612-622.
[9] Rodriguez, F. J., Lozano, M., Blum, C., Garcia-Martinez, C., (2013). “An iterated greedy algorithm for the large-scale unrelated parallel machine scheduling problem”. Computers & Operations Research, 40: 1829-1841.
[10] Fanjul-Peyro, L., Perea, F., Ruiz, R., (2017). “Models and matheuristics for the unrelated parallel machine scheduling problem with additional resources”. European Journal of Operational Research 000 (2017): 1-12.
[11] Hoogeveen, H., (2005). “Multicriteria scheduling”. European Journal of Operational Research, 167: 592e623.
[12] Liu, Y., Dong, H., Lohse, N., Petrovic, S., Gindy, N., (2013). “An investigation into minimizingtotal energy consumption and total weighted tardiness in job shops”.Journal of Cleaner Production, 1e10.
[13] Yan, H., Fei, L., Hua-jun, C., Cong-bo, L., (2005). A bi-objective model for job-shopscheduling problem to minimize both energy consumption and makespan.J. Cent. South Univ. Technol. 12.
[14] Liu, X., Zou, F., Zhang, X., (2008). “Mathematical model and genetic optimization forhybrid flow shop scheduling problem based on energy consumption”. In: 2008 Chinese Control and Decision Conference, pp. 1002e1007.
[15] Yildirim, M.B., Mouzon, G., (2011). “Single-machine sustainable production planning tominimize total energy consumption and total completion time using a multipleobjective genetic algorithm”. In: IEEE Transactions on Engineering Management,pp. 1e13.
[16] Fang, K., Uhan, N., Zhao, F., Sutherland, J.W., (2011). “A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction”. Journal of Manufacturing Systems, 30, 234e240.
[17] Fang, K., Bertrand M.T., Lin. (2012). “Parallel-machine scheduling to minimize tardiness penalty and power cost”. Computers & Industrial Engineering, 64 (2013): 224-234.
[18] Ada Che, Shibohua Zhang, Xueqi, Wu. (2017). “Energy-conscious unrelated parallel machine scheduling under time-of-use electricity tariffs”. Journal of cleaner production.156(10): 688-697.
[19] Moon, J.Y., Shin, K., Park, J., (2013). “Optimization of production scheduling with time-dependent and machine-dependent electricity cost for industrial energy efficiency”. International Journal of Advanced Manufacturing Technology,68, 523-535.
[20] Ding, J.Y., Song, S., Zhang, R., Chiong, R., (2016). “Parallel machine scheduling under time-of-useelectricity prices: new models and optimization approaches”. IEEE Transactions on Automation Science & Engineering,13(2): 1138-1154.
[21] Luo, H., Du, B., Huang, G.Q., Chen, H., Li, X., (2013). “Hybrid flow shop scheduling considering machine electricity consumption cost”. International Journal of Production Economics,146: 423-439.
[22] Zhang, H., Zhao, F., Fang, K., Sutherland, J.W., (2014). “Energy-conscious flow shop scheduling under time-of-use electricity tariffs”. CIRP Annals – Manufacturing Technology,63: 37-40.
[23] Sharma, A., Zhao, F., Sutherland, J.W., (2015). “Econological scheduling of a manufacturingenterprise operating under a time-of-use electricity tariff”. Journal of Cleaner Production,108: 256-270.
[24] Baker, K. R., Smith, J. C. (2003). “A multiple-criterion model for machine scheduling”. Journal of Scheduling, 6(1): 7-16.
[25] Agnetis, A., Mirchandani, P. B., Pacciarelli, D., Pacifici, A., (2004). “Scheduling problems with two competing agents”. Operations Research, 52(2): 229-242.
[26] Cheng, T. C. E., Ng, C. T., Yuan, J. J., (2006). “Multi-agent scheduling on a singlemachine to minimize total weighted number of tardy jobs”. Theoretical Computer Science, 362(1–3): 273-281.
[27] Leung, J. Y. T., Pinedo, M., Wan, G. H., (2010). Competitive two agents scheduling and its applications. Operations Research, 58(2): 458-469.
[28] Wu, C. C., Huang, S. K., Lee, W. C., (2011). “Two-agent scheduling with learning consideration”. Computers & Industrial Engineering, 61(4): 1324-1335.
[29] Cheng, T. C. E., Cheng, S. R., Wu, W. H., Hsu, P. H., Wu, C. C., (2011). “A two-agent single machine scheduling problem with truncated sum-of-processing-timesbased learning considerations”. Computers & Industrial Engineering, 60(4): 534-541.
[30] Elvikis, D., Hamacher, H. W., T’kindt, V., (2011). “Scheduling two agents on uniformparallel machines with makespan and cost functions”. Journal of Scheduling, 14(5): 471-481.
[31] Lee, W. C., Chung, Y. H., Hu, M. C., (2012). “Genetic algorithms for a two-agentsingle-machine problem with release time”. Applied Soft Computing, 12(11):3580-3589.
[32] Lee, W. C., Wang, J. Y., Lin, M. C., (2016). “A branch-and-bound algorithm forminimizing the total weighted completion time on parallel identical machineswith two competing agents”. Knowledge-Based Systems, 105: 68-82.
[33] Lee, W. C., Wang, J. Y., (2014). “A scheduling problem with three competing agents”. Computers & Operations Research, 51: 208-217.
[34] Lee, W. C., Wang, J. Y., (2017). “A three-agent scheduling problem for minimizing the makespan on a single machine”. Computers & Industrial Engineering, 106: 147-160.
[35] Shiau, Y. R., Tsai, M. S., Lee, W. C., Cheng, T. C. E., (2015). “Two-agent two-machine flowshop scheduling with learning effects to minimize the total completion time”. Computers & Industrial Engineering, 87: 580-589.
[36] Yuan, J. J., Ng, C. T., Cheng, T. C. E., (2015). “Two-agent single-machine schedulingwith release dates and preemption to minimize the maximum lateness”. Journal of Scheduling, 18(2): 147-153.
[37] Pinedo, M. (2001). Scheduling: Theory, Algorithms, and Systems. Prentice-Hall Inc., Englewood Cliffs, N.J.
[38] Garey, MR., Johnson, DS., (1978). “Strong NP-completeness results: Motivation,examples, and implications”. Journal of the Association for Computing Machinery,25(3): 499-508.
[39] Behnamian J., Fatemi Ghomi SMT, Zandieh M., (2009). “A multi-phase covering Pareto-optimal front method to multi-objective scheduling in a realistic hybrid flowshop using a hybrid metaheuristic”. Expert Systems with Applications, 36(8): 11057-1106