[1] Pohekar, SD., Ramachandran M., (2004). Application of multi-criteria decision making to sustainable energy planning - A review. Renew Sustain Energy Rev; 8: 365–381. doi:10.1016/j.rser.2003.12.007.
[2] Kazemi, A., Mehregan, MR., Ganjavi, HS., Hosseinzadeh, M., (2012). Energy Resource Allocation in Iran: A Fuzzy Multi-Objective Analysis. Procedia - Soc Behav Sci; 41:334–41. doi:10.1016/j.sbspro.2012.04.038.
[3] Prasad, RD., Bansal, RC., Raturi, A., (2014). Multi-faceted energy planning: A review. Renew Sustain Energy Rev; 38: 686–699. doi:10.1016/j.rser.2014.07.021.
[4] Huang, Z., Yu, H., Peng, Z., Zhao, M., (2015). Methods and tools for community energy planning : A review. Renew Sustain Energy Rev; 42: 1335–1348. doi:10.1016/j.rser.2014.11.042.
[5] Cai, YP., Huang, GH., Tan, Q., Yang, ZF., (2009). Planning of community-scale renewable energy management systems in a mixed stochastic and fuzzy environment. Renew Energy 2009; 34: 1833–1847. doi:10.1016/j.renene.2008.11.024.
[6] Li, YP., Huang, GH., (2012). Electric-power systems planning and greenhouse-gas emission management under uncertainty. Energy Convers Manag; 57: 173–182. doi:10.1016/j.enconman.2011.12.018.
[7] Hopwood, B., Mellor, M., O’Brein, G., (2005). Sustainable Development: Mapping Different Approaches. Susutainable Dev; 13: 38–52. doi:10.1016/B978-1-85617-672-9.10008-0.
[8] Fathipour, F., Saidi-Mehrabad, M., (2018). A multi-objective energy planning considering sustainable development by a TOPSIS-based augmented e-constraint. J Renew Sustain Energy; 10. doi:10.1063/1.5008545.
[9] Tsoutsos, T., Drandaki, M., Frantzeskaki, N., Iosifidis, E., Kiosses, I., (2009). Sustainable energy planning by using multi-criteria analysis application in the island of Crete. Energy Policy; 37: 1587–1600. doi:10.1016/j.enpol.2008.12.011.
[10] Kaya, T., Kahraman, C., (2010). Multicriteria renewable energy planning using an integrated fuzzy VIKOR & amp; AHP methodology: The case of Istanbul. Energy; 35: 2517-2527.
[11] Kaya, T., Kahraman, C., (2011). Expert Systems with Applications Multicriteria decision making in energy planning using a modified fuzzy TOPSIS methodology. Expert Syst Appl; 38: 6577–6585. doi:10.1016/j.eswa.2010.11.081.
[12] Montajabiha, M,. (2016). An Extended PROMETHE II Multi-Criteria Group Decision Making Technique Based on Intuitionistic Fuzzy Logic for Sustainable Energy Planning. Gr Decis Negot; 25: 221–244. doi:10.1007/s10726-015-9440-z.
[13] Cayir Ervural, B., Zaim, S., Demirel, OF., Aydin, Z., Delen, D., (2018). An ANP and fuzzy TOPSIS-based SWOT analysis for Turkey’s energy planning. Renew Sustain Energy Rev; 82: 1538–1550. doi:10.1016/j.rser.2017.06.095.
[14] Sadeghi, M., Mirshojaeian Hosseini, H., (2006). Energy supply planning in Iran by using fuzzy linear programming approach (regarding uncertainties of investment costs). Energy Policy; 34: 993–1003. doi:10.1016/j.enpol.2004.09.005.
[15] Cai, YP., Huang, GH., Lin, QG., Nie, XH., Tan, Q., (2009). An optimization-model-based interactive decision support system for regional energy management systems planning under uncertainty. Expert Syst Appl; 36: 3470–3482. doi:10.1016/j.eswa.2008.02.036.
[16] Koo, J., Han, K., Yoon, ES., (2011). Integration of CCS , emissions trading and volatilities of fuel prices into sustainable energy planning , and its robust optimization. Renew Sustain Energy Rev; 15: 665–672. doi:10.1016/j.rser.2010.07.050.
[17] Dong, C., Huang, GH., Cai, YP., Liu, Y., (2013). Robust planning of energy management systems with environmental and constraint-conservative considerations under multiple uncertainties. Energy Convers Manag; 65: 471–486. doi:10.1016/j.enconman.2012.09.001.
[18] Xie, YL., Huang, GH., Li, W., Ji, L., (2014) Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model-A case study of Jining City, China. Appl Energy; 136: 150–167. doi:10.1016/j.apenergy.2014.09.015.
[19] Famiglietti, JS., (2014). The global groundwater crisis. Nat Clim Chang; 4: 945–8. doi:10.1038/nclimate2425.
[20] Islam, S., Susskind, L., (2015). Understanding the water crisis in Africa and the Middle East: How can science inform policy and practice? Bull At Sci; 71: 39–49. doi:10.1177/0096340215571906.
[21] Gorjian, S., Ghobadian, B., (2015). Solar desalination: A sustainable solution to water crisis in Iran. Renew Sustain Energy Rev; 48: 571–584. doi:10.1016/j.rser.2015.04.009.
[22] Kardooni, R., Yusoff, SB., Kari, FB., (2016). Renewable energy technology acceptance in Peninsular Malaysia. Energy Policy;88: 1–10. doi:10.1016/j.enpol.2015.10.005.
[23] Upham, P., Oltra, C., Boso, À., (2015). Towards a cross-paradigmatic framework of the social acceptance of energy systems. Energy Res Soc Sci; 8: 100–112. doi:10.1016/j.erss.2015.05.003.
[24] Sahinidis, N V., (2004). Optimization under uncertainty: State-of-the-art and opportunities. Comput Chem Eng; 28: 971–983. doi:10.1016/j.compchemeng.2003.09.017.
[25] Snyder, L V., Daskin, MS., (2006). Stochastic p-robust location problems. IIE Trans (Institute Ind Eng ; 38: 971–985. doi:10.1080/07408170500469113.
[26] Shakouri, G. H, Aliakbarisani, S., (2016). At what valuation of sustainability can we abandon fossil fuels? A comprehensive multistage decision support model for electricity planning. Energy; 107: 60–77. doi:10.1016/j.energy.2016.03.124.