ارائه مدل مکان‏ یابی-تخصیص چند سطحی در چارچوب شبکه‏ های صف

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی صنایع، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران.

2 استاد، دانشکده مهندسی صنایع، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران.

3 هیئت علمی/دانشگاه خواجه نصیر الدین طوسی

چکیده

در این مقاله مسأله مکان‏ یابی-تخصیص تسهیلات چند‏سطحی مستعد ازدحام بررسی می‏ گردد. در بسیاری از مسائل مکان ‏یابی دنیای واقعی، یک مرکز خدماتی قادر به خدمت‏ دهی همزمان تمامی تقاضای دریافت خدمت از آن مرکز نمی ‏باشد، بنابراین تشکیل صف و ازدحام غیر‏قابل‏ اجتناب است. بدین منظور یک مدل برنامه ‏ریزی عدد‏صحیح غیرخطی چند‏هدفه برای مسأله مکان‏ یابی تسهیلات صفی با ساختاری مشابه شبکه صف سری M/M/1 طراحی می‏ شود که در آن تسهیلات دارای چندین سطح هستند و مشتریان برای تکمیل خدمت باید همه سطوح را طی کنند. توابع هدف مدل کمینه‏ سازی مجموع مدت‏ زمان سفر مشتریان به تسهیلات و مدت‏ زمان انتظار در سیستم، و کمینه‏ سازی حداکثر احتمال بیکاری در تسهیلات است. مدل ریاضی پیشنهادی به ‏کمک ابزار تحلیل حساسیت، اعتبار‏سنجی و تأثیر تغییرات محتمل پارامترها بر روی جواب پارتو بررسی می‏ گردد. نتایج بدست آمده نشان‏ دهنده صحت رفتار مدل نسبت به پارامترهای حساس مسأله است. همچنین برای ارزیابی مدل تعدادی مثال عددی ارائه و بااستفاده از روش محدودیت اپسیلن تقویت‏ شده در بهینه‏ سازی چند‏هدفه، حل می‏ شوند. مکان‏ مناسب از بین مکان‏ های بالقوه برای تعداد مناسبی از تسهیلات در هر سطح و تخصیص مشتریان به تسهیلات هر سطح به‏ کمک جواب‏‏ های پارتوی بدست آمده تعیین می‏ شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Multi-layer location-allocation model within queuing networks framework

نویسندگان [English]

  • Dorrin Saffari 1
  • abdollah aghaie 2
  • emad roghanian 3
1 Department of Industrial Engineering, Khajeh Nasir Toosi University of Technology, Tehran, Iran
2 Department of Industrial Engineering, Khajeh Nasir Toosi University of Technology, Tehran, Iran
چکیده [English]

In this paper, we investigate location-allocation problem for multi-layer congestible facilities. In many real word location situations, a service center is not capable of serving all the simultaneous requests made for the service and as a result forming queues and congestion is inevitable. For this purpose, a multi-objective nonlinear integer programming model for queuing facility location problem with the same framework to the M/M/1 series queuing network is designed, in which facilities have several layers and customers should pass all the layers for service completion. The objective functions of the model are minimizing the sum of customers traveling times to facilities and waiting times in the system, and minimizing the maximum idle probability of the facilities. The proposed mathematical model is validated by sensitivity analysis, and the effect of the probable variations of the parameters on the Pareto solution is investigated. The results show that the model behaves correctly to the sensitive parameters of the problem. To evaluate the model, some numerical experiments are presented and solved with the Augmented ε-‏constraint technique of multi-objective optimization as well. The appropriate location among potential sites for appropriate number of facilities and allocation of customers to facilities of each layer are determined by Pareto optimal solutions found.

کلیدواژه‌ها [English]

  • Location-allocation
  • Multi-layer service
  • Queuing theory
  • Multi-objective optimization
  • Augmented ε-constraint method

 

[1]   Myerson, P., (2015). “Supply chain and logistics management made easy: methods and applications for planning, operations, integration, control and improvement, and network design”, Pearson Education.
[2]    امیری، مقصود، علی پور، مهرداد، حیدری فرسنگی، مجید (1391)، الگوریتم‌های ژنتیک و ممتیک برای مدل صف فازی حداکثر پوشش مکان‌یابی ـ تخصیص با در نظر گرفتن تراکم در سیستم و چند نوع تقاضا، مهندسی صنایع و مدیریت، 1(2): 15-25.
[3]   Owen, S.H., Daskin, M.S., (1998). “Strategic facility location: A review:, European journal of operational research, 111(3): pp.423-447.
[4]   ReVelle, C.S., Eiselt, H.A., (2005). “Location analysis: A synthesis and survey, European Journal of Operational Research, 165(1): 1-19.
[5]   Cooper, L., (1963). “Location-allocation problems”, Operations Research, 11: 331-344.
[6]   Heragu, S.S., (2008). “Facilities design”, CRC Press.
[7]   Hodgson, M.J., (1990). “A Flow‐Capturing Location‐Allocation Model”, Geographical Analysis, 22(3): 270-279.
[8]   Daskin, M.S., (2011). “Network and discrete location: models, algorithms, and applications”, John Wiley & Sons.
[9]   Marianov, V., Serra, D., (2001). “Hierarchical location–allocation models for congested systems”, European Journal of Operational Research, 135(1): 195-208.
[10] Porter, A.L., (1991). “Forecasting and management of technology”, 18, John Wiley & Sons.
[11] Bhat, U.N., (2015). “An Introduction to Queueing Theory: Modeling and Analysis in Applications”, 2nd edition, Birkhäuser Basel.
[12] ارکات، جمال، زمانی، شکوفه (1392)، مکان یابی شبکه ای تسهیلات پرازدحام با در نظر گرفتن انصراف قبل از ورود مشتریان، نشریه پژوهش های مهندسی صنایع در سیستم های تولید، 1(2): 37-44.
[13] Larson, R.C., (1974). “A hypercube queuing model for facility location and redistricting in urban emergency services”, Computers and Operations Research, 1:67–95.
[14] Cooper, R.B., (1981). “Introduction to Queuing Theory”, 2nd Edition, New York: Elsevier North Holland.
[15] Wang, Q., Batta, R., Rump, C.M., (2002). “Algorithms for a facility location problem with stochastic customer demand and immobile servers”, Annals of operations Research, 111(1-4): 17-34.
[16] Pasandideh, S.H.R., Niaki, S.T.A., (2012). “Genetic application in a facility location problem with random demand within queuing framework”, Journal of Intelligent Manufacturing, 23(3): 651-659.
[17] Pasandideh, S.H.R., Niaki, S.T.A., Hajipour, V., (2013). “A multi-objective facility location model with batch arrivals: two parameter-tuned meta-heuristic algorithms”, Journal of Intelligent Manufacturing, 24(2): 331-348.
[18] Hajipour, V., Fattahi, P., Tavana, M., Di Caprio, D., (2016). “Multi-objective multi-layer congested facility location-allocation problem optimization with Pareto-based meta-heuristics”, Applied Mathematical Modelling, 40(7): 4948-4969.
[19] Harewood, S.I., (2002). “Emergency ambulance deployment in Barbados: a multi-objective approach”, Journal of the Operational Research Society, 53(2): 185-192.
[20] Tavakkoli-Moghaddam, R., Vazifeh-Noshafagh, S., Taleizadeh, A.A., Hajipour, V., Mahmoudi, A., (2017). “Pricing and location decisions in multi-objective facility location problem with M/M/m/k queuing systems”, Engineering Optimization, 49(1): 136-160.
[21] Syam, S.S., (2008). “A multiple server location–allocation model for service system design”, Computers & Operations Research, 35(7): 2248-2265.
[22] Aboolian, R., Berman, O., Drezner, Z., (2009). “The multiple server center location problem”, Annals of Operations Research, 167(1): 337-352.
[23] Rahmati, S.H.A., Hajipour, V., Niaki, S.T.A., (2013). “A soft-computing Pareto-based meta-heuristic algorithm for a multi-objective multi-server facility location problem”, Applied Soft Computing, 13(4): 1728-1740.
[24] Araz, O.M., Fowler, J.W., Nafarrate, A.R., (2014). “Optimizing service times for a public health emergency using a genetic algorithm: Locating dispensing sites and allocating medical staff”, IIE Transactions on Healthcare Systems Engineering, 4(4): 178-190
[25] Arkat, J., Jafari, R., (2016). “Network location problem with Stochastic and Uniformly Distributed Demands”, International Journal of Engineering-Transactions B: Applications, 29(5): 654
[26] ایروانی، محمدرضا، تیموری، ابراهیم (1391)، سیستم های صف، انتشارات دانشگاه علم و صنعت، تهران، جلد دوم، چاپ دوم.
[27]  مدرس، محمد، تیموری، ابراهیم (1393)، نظریه صف، انتشارات دانشگاه علم و صنعت، تهران، چاپ ششم.
[28] Mavrotas, G., (2009). “Effective implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems”, Appl Math Comput, 213: 455–465.
[29] Hwang, C.L., Masud, A.S.M., (2012). “Multiple objective decision making—methods and applications: a state-of-the-art survey”, Springer Science & Business Media.
[30] Aghaei, J., Amjady, N., Shayanfar, H.A., (2011). “Multi-objective electricity market clearing considering dynamic security by lexicographic optimization and augmented epsilon constraint method”, Applied Soft Computing, 11(4): 3846-3858.
[31] Sadjadi, S.J., Heidari, M., Esboei, A.A., (2014). “Augmented ε-constraint method in multiobjective staff scheduling problem: a case study”, The International Journal of Advanced Manufacturing Technology, 70(5-8): 1505-1514.