[1] Xiao, T., Yang, D., (2008). “Price and service competition of supply chains with risk-averse retailers under demand uncertainty”, International Journal of Production Economics, 114(1): 187-200.
[2] Rezapour, S., Farahani, R.Z., Ghodsipour, S.H., Abdollahzadeh, S., (2011). “Strategic design of competing supply chain networks with foresight”, Advances in Engineering Software, 42(4): 130-141.
[3] Zhang, D., (2006). “A network economic model for supply chain versus supply chain competition”, Omega, 34(3): 283-295.
[4] Boyaci, T., Gallego, G., (2004). “Supply Chain Coordination in a Market with Customer Service Competition”, Production and Operations Management, 13(1): 3-22.
[5] Anderson, E.J., Bao, Y., (2010). “Price competition with integrated and decentralized supply chains”, European Journal of Operational Research, 200(1): 227-234.
[6] Fallah, H., Eskandari, H., Pishvaee, M.S., (2015). “Competitive closed-loop supply chain network design under uncertainty”, Journal of Manufacturing Systems, 37: 649-661.
[7] Makui, A., Heydari, M., Aazami, A., Dehghani, E., (2016). “Accelerating Benders decomposition approach for robust aggregate production planning of products with a very limited expiration date”, Computers & Industrial Engineering, 100: 34-51.
[8] Saharidis, G.K., Ierapetritou, M.G., (2009). “Resolution method for mixed integer bi-level linear problems based on decomposition technique”, Journal of Global Optimization, 44(1): 29-51.
[9] Mulvey, J.M., Vanderbei, R.J., Zenios, S.A., (1995). “Robust Optimization of Large-Scale Systems”, Operations Research, 43(2): 264-281.
[10] Bernstein, F., Federgruen, A., (2004). “A General Equilibrium Model for Industries with Price and Service Competition”, Operations Research, 52(6): 868-886.
[11] Candler, W., Norton, R., (1977). “Multi-level programming and development policy”, The World Bank.
[12] Zhang, L., Rushton, G., (2008). “Optimizing the size and locations of facilities in competitive multi-site service systems”, Computers & Operations Research, 35(2): 327-338.
[13] Bracken, J., McGill, J.T., (1973). “Mathematical Programs with Optimization Problems in the Constraints”, Operations Research, 21(1): 37-44.
[14] Stackelberg, H.V., (1952). “The theory of the market economy”, Oxford University Press.
[15] Vicente, L.N., Calamai, P.H., (1994). “Bilevel and multilevel programming: A bibliography review”, Journal of Global Optimization, 5(3): 291-306.
[16] Candler, W., Fortuny-Amat, J., McCarl, B., (1981). “The Potential Role of Multilevel Programming in Agricultural Economics”, American Journal of Agricultural Economics, 63(3): 521-531.
[17] Fortuny-Amat, J., McCarl, B., (1981). “A representation and economic interpretation of a two-level programming problem”, The Journal of the Operational Research Society, 32(9): 783-792.
[18] Shimizu, K., Aiyoshi, E., (1981). “A new computational method for Stackelberg and min-max problems by use of a penalty method”, IEEE Transactions on Automatic Control, 26(2): 460-466.
[19] Bard, J.F., Falk, J.E. (1982). “An explicit solution to the multi-level programming problem”, Computers and Operations Research, 9(1): 77-100.
[20] Colson, B., Marcotte, P., Savard, G., (2005). “Bilevel programming: A survey”, 4OR, 3(2): 87-107.
[21] Colson, B., Marcotte, P., Savard, G., (2007). “An overview of bilevel optimization”, Annals of Operations Research, 153(1): 235-256.
[22] Bard, J.F. (1998). “Practical bilevel optimization: algorithms and applications”. Springer Science & Business Media, 30.
[23] Farahani, R.Z., Rezapour, S., Drezner, T., Fallah, S., (2014). “Competitive supply chain network design: An overview of classifications, models, solution techniques and applications”, Omega (United Kingdom), 45: 92-118.
[24] Ben-Ayed, O., Boyce, D.E., Blair, C.E., (1988). “A general bilevel linear programming formulation of the network design problem”, Transportation Research Part B: Methodological, 22(4): 311-318.
[25] Bard, J., Moore, J., (1990). “A branch and bound algorithm for the bilevel programming problem”, SIAM Journal on Scientific and Statistical Computing, 11(2): 281-292.
[26] Bard, J.F., Moore, J.T., (1992). “An algorithm for the discrete bilevel programming problem”, Naval Research Logistics, 39(3): 419-435.
[27] Edmunds, T.A., Bard, J.F., (1992). “An algorithm for the mixed-integer nonlinear bilevel programming problem”, Annals of Operations Research, 34(1): 149-162.
[28] Yang, H., (1995). “Heuristic algorithms for the bilevel origin-destination matrix estimation problem”, Transportation Research Part B, 29(4): 231-242
[29] Maher, M.J., Zhang, X., Vliet, Van. D., (2001). “A bi-level programming approach for trip matrix estimation and traffic control problems with stochastic user equilibrium link flows”, Transportation Research Part B: Methodological, 35(1): 23-40.
[30] Burgard, A.P., Pharkya, P., Maranas, C.D., (2003). “OptKnock: A Bilevel Programming Framework for Identifying Gene Knockout Strategies for Microbial Strain Optimization”, Biotechnology and Bioengineering, 84(6): 647-657.
[31] Gao, Z., Wu, J., Sun, H., (2005). “Solution algorithm for the bi-level discrete network design problem”, Transportation Research Part B: Methodological, 39(6): 479-495.
[32] Shi, C., Lu, J., Zhang, G., Zhou, H., (2006). “An extended branch and bound algorithm for linear bilevel programming”, Applied Mathematics and Computation, 180(2): 529-537.
[33] Sun, H., Gao, Z., Wu, J., (2008). “A bi-level programming model and solution algorithm for the location of logistics distribution centers”, Applied Mathematical Modelling, 32(4): 610-616.
[34] Zhang, T., Zhao, Q., Wu, W., (2009). “Bi-level programming model of container port game in the container transport supernetwork”, Journal of Applied Mathematics and Computing, 31(1): 13-32.
[35] Gelareh, S., Nickel, S., Pisinger, D., (2010). “Liner shipping hub network design in a competitive environment”, Transportation Research Part E: Logistics and Transportation Review, 46(6): 991-1004.
[36] Küükaydin, H., Aras, N., Kuban Altinel, I., (2011). “Competitive facility location problem with attractiveness adjustment of the follower: A bilevel programming model and its solution”, European Journal of Operational Research, 208(3): 206-220.
[37] Naimi Sadigh, A., Mozafari, M., Karimi, B., (2012). Manufacturer-retailer supply chain coordination: A bi-level programming approach. Advances in Engineering Software, 45(1): 144-152.
[38] Kristianto, Y., Helo, P., Jiao, R.J., (2013). “Mass customization design of engineer-to-order products using Benders’ decomposition and bi-level stochastic programming”, Journal of Intelligent Manufacturing, 24(5): 961-975.
[39] Rezapour, S., Zanjirani Farahani, R., (2014). “Supply chain network design under oligopolistic price and service level competition with foresight”, Computers & Industrial Engineering, 72: 129-142.
[40] Rezapour, S., Zanjirani Farahani, R., (2014). “Supply chain network design under oligopolistic price and service level competition with foresight”, Computers & Industrial Engineering, 72: 129-142.
[41] Rezapour, S., Farahani, R.Z., Fahimnia, B., Govindan, K., Mansouri, Y., (2015). “Competitive closed-loop supply chain network design with price-dependent demands”, Journal of Cleaner Production, 93: 251-272.
[42] Rashidi, E., Parsafard, M., Medal, H., Li, X., (2016). “Optimal traffic calming: A mixed-integer bi-level programming model for locating sidewalks and crosswalks in a multimodal transportation network to maximize pedestrians’ safety and network usability”, Transportation Research Part E: Logistics and Transportation Review, 91: 33-50.
[43] Han, J., Zhang, G., Hu, Y., Lu, J., (2016). “A solution to bi/tri-level programming problems using particle swarm optimization”, Information Sciences, 370: 519-537
[44] Mula, J., Poler, R., Garcia-Sabater, J.P., Lario, F. C., (2006). “Models for production planning under uncertainty: A review”, International Journal of Production Economics, 103(1): 271-285.
[45] Leung, S.C. H., Ng, W., (2007). “A goal programming model for production planning of perishable products with postponement”, Computers & Industrial Engineering, 53(3): 531-541.
[46] Leung, S.C.H., Chan, S.S.W., (2009). “A goal programming model for aggregate production planning with resource utilization constraint”, Computers & Industrial Engineering, 56(3): 1053-1064.
[47] Zhang, J., Liu, X., Tu, Y.L., (2011). “A capacitated production planning problem for closed-loop supply chain with remanufacturing”, The International Journal of Advanced Manufacturing Technology, 54(5): 757-766.
[48] Mirzapour Al-E-Hashem, S.M.J., Malekly, H., Aryanezhad, M.B., (2011). “A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty”, International Journal of Production Economics, 134(1): 28-42.
[49] Zhang, G., Shang, J., Li, W., (2011). “Collaborative production planning of supply chain under price and demand uncertainty”, European Journal of Operational Research, 215(3): 590-603.
[50] Yaghin, R.G., Torabi, S.A., Ghomi, S.M.T.F., (2012). “Integrated markdown pricing and aggregate production planning in a two echelon supply chain: A hybrid fuzzy multiple objective approach”, Applied Mathematical Modelling, 36(12): 6011-6030.
[51] Ramezanian, R., Rahmani, D., Barzinpour, F., (2012). “An aggregate production planning model for two phase production systems: Solving with genetic algorithm and tabu search”, Expert Systems with Applications, 39(1): 1256-1263.
[52] Awudu, I., Zhang, J., (2013). “Stochastic production planning for a biofuel supply chain under demand and price uncertainties”, Applied Energy, 103: 189-196.
[53] Da-Silva, A.F., Marins, F.A.S., (2014). “A Fuzzy Goal Programming model for solving aggregate production-planning problems under uncertainty: A case study in a Brazilian sugar mill”, Energy Economics, 45: 196-204.
[54] Chakrabortty, R.K., Hasin, M.A.A., Sarker, R.A., Essam, D.L., (2015). “A possibilistic environment based particle swarm optimization for aggregate production planning”, Computers & Industrial Engineering, 88: 366-377.
[55] Jabbarzadeh, A., Fahimnia, B., Sheu, J.B., (2015). “An enhanced robustness approach for managing supply and demand uncertainties”, International Journal of Production Economics, 183: 620-631.
[56] خیرخواه، امیرسامان، نوبری، آرش، حاجیپور، وحید، (1395). «ارایه الگوریتم رقابت استعماری چندهدفه جهت بهینهسازی مسئلهی برنامهریزی تولید ادغامی پایا»، پژوهشهای مهندسی صنایع در سیستمهای تولید، 4(7): 1-15.
[57] Entezaminia, A., Heidari, M., Rahmani, D., (2017). “Robust aggregate production planning in a green supply chain under uncertainty considering reverse logistics: a case study”, The International Journal of Advanced Manufacturing Technology, 90(5-8): 1507-1528.
[58] ترکمن، سمیه، فاطمی قمی، سید محمد تقی، (1395). «برنامهریزی تولید چندمرحلهای در زنجیره تأمین حلقه بسته همراه با راهاندازیهای وابسته به توالی و انتقال راهاندازی»، پژوهشهای مهندسی صنایع در سیستمهای تولید، 4(9): 239-255.
[59] Mokhtari, H., Hasani, A. (2017), “A multi-objective model for cleaner production-transportation planning in manufacturing plants via fuzzy goal programming”, Journal of Manufacturing Systems, 44: 230-242.
[60] Makui, A., Ghavamifar, A., (2016). “Benders Decomposition Algorithm for Competitive Supply Chain Network Design under Risk of Disruption and Uncertainty”, Journal of Industrial and Systems Engineering, (special issue on supply chain): 30-50.
[61] Vidal, C.J., Goetschalckx, M., (2001). “A global supply chain model with transfer pricing and transportation cost allocation”, European Journal of Operational Research, 129: 134-158.