مدل‌سازی قابلیت اطمینان وسایل نقلیه هدایت‌شونده خودکار در سیستم‌های تولید سلولی: حل با استفاده از الگوریتم جستجوی فاخته با مرتب‌سازی جواب‌های نامغلوب

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه مهندسی صنایع، دانشکده مهندسی صنایع و مکانیک، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران.

2 استاد، دانشکده مهندسی صنایع، دانشگاه صنعتی شریف، تهران، ایران.

3 استادیار، گروه مهندسی صنایع، دانشکده مهندسی صنایع و مکانیک، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران.

چکیده

امروزه به‌کارگیری قابلیت اطمینان در سیستم‌های تولید سلولی با استفاده از وسایل نقلیه هدایت‌شونده خودکار (AGV) یکی از مهم‌ترین مباحث برای بهبود راندمان سیستم‌های تولیدی است. در این مقاله یک مدل ریاضی چندهدفه به‌منظور کاهش هزینه‌های تولید و جابجایی قطعات در دو حالت درون‌سلولی و بین سلولی و به دنبال آن افزایش قابلیت اطمینان وسایل نقلیه هدایت‌شونده خودکار ارائه شده است. فرض می‌شود که وسایل نقلیه هدایت‌شونده خودکار که وظیفه جابجایی درون‌سلولی را بر عهده دارند، دارای یکی از دو نوع نرخ خرابی وایبل و نمایی در هر سلول هستند. همچنین وسایل نقلیه هدایت‌شونده خودکار بین سلولی از نرخ خرابی ثابت تبعیت می‌کنند. قابل توجه است که همه انتقالات درون‌ و بین سلولی تنها توسط وسایل نقلیه هدایت‌شونده خودکار صورت می‌گیرند و در صورت خرابی همه AGV‌ها سیستم تولید متوقف می‌شود. از آنجائی که امکان محاسبه قابلیت اطمینان در حالت نرخ خرابی وایبل وجود ندارد، از شبیه‌سازی برای برآورد قابلیت اطمینان در این حالت استفاده می‌شود. در ادامه برای اعتبار سنجی، چندین مثال عددی به‌صورت تصادفی تولید و برای حل آن‌ها از دو الگوریتم فرا‌ ابتکاری الگوریتم جستجوی فاخته با مرتب‌سازی جواب‌های نا مغلوب (NSCS) و الگوریتم چندهدفه علف‌های هرز (MOIWO) استفاده می‌شود. در انتها از روش تکنیک ترکیبی سلسله مراتبی و تاپسیس
(AHP-TOPSIS) به‌منظور انتخاب الگوریتم کاراتر بر اساس به‌کارگیری چند معیار چندهدفه به‌صورت هم‌زمان استفاده می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Reliability Modeling of Automated Guided Vehicles in Cellular Manufacturing Systems: A Non-Dominated Sorting Cuckoo Search (NSCS) algorithm

نویسندگان [English]

  • Behzad Karimi 1
  • S.T.A. Niaki 2
  • hassan haleh 3
  • Bahman Naderi 3
1 PhD Candidate, Faculty of Industrial Engineering and Management, Qazvin Islamic Azad University, Qazvin, Iran
2 Faculty of Industrial Engineering and Management, Sharif University of Technology, Tehran, Iran.
3 Faculty of Industrial Engineering and Management, Qazvin Islamic Azad University, Qazvin, Iran.
چکیده [English]

Reliability of the cellular manufacturing systems and automated guided vehicles (AGVs) in the production systems has been recently become one of the most challenging issues. This paper focuses on proposing a multi-objective mathematical model in order to optimize three objectives including the minimization of production costs, minimization of the intracellular and intercellular part transportations and finally maximization of the reliability of AGVs. The failure rates of intracellular AGVs at any of the cells follow either an exponential or a Weibull distribution whereas, this rate is considered to be constant for the intercellular AGVs. As reliability calculation in the Weibull case is very hard (if not impossible), a simulation approach is applied to estimate the reliability of system in this case. It is assumed that all the intracellular and intercellular transportations are done through the AGVs. This means that the production system halts when all AGVs are failed. In order to validate the proposed model, some numerical examples are generated and solved by implementation of a non-dominated sorting cuckoo search (NSCS) and a multi-objective invasive weeds optimization (MOIWO) algorithm. Finally, a hybrid analytic hierarchy process and TOPSIS method (AHP-TOPSIS) is utilized to select the better algorithm in terms of some multi-objective metrics, simultaneously

کلیدواژه‌ها [English]

  • Reliability
  • Cellular manufacturing systems
  • Automatic guided vehicles
  • Simulation
  • Non-dominated sorting cuckoo search

[1]    Sanchez, A.M., (1994). “FMS in Spanish Industry: Lessons from Experience”, Integrated Manufacturing Systems, 5(2): 28-36.

[2]    Tompkins, J.A., White, J.A., Bozer, Y.A., Tanchoco, J.M.A., (2010). “Facilities planning”, John Wiley & Sons.

[3]    Paulo, J., Lashkari, R.S., Dutta, S.P., (2002). “Operation allocation and materials-handling system selection in a flexible manufacturing system: A sequential modelling approach”, International Journal of Production Research, 40(1): 7-35.

[4]    Chen, M., Cao, D., (2004). “Coordinating production planning in cellular manufacturing environment using Tabu search”, Computers & Industrial Engineering, 46(3): 571-588.

[5]    Chen, M., Cao, D., (2004). “Coordinating production planning in cellular manufacturing environment using Tabu search,” Computers & Industrial Engineering, 46(3): 571-588.

[6]    Nsakanda, A.L., Diaby, M., Price, W.L., (2006) “Hybrid genetic approach for solving large-scale capacitated cell formation problems with multiple routings,” European Journal of Operational Research, 171(3): 1051-1070.

[7]    Tavakkoli-Moghaddam, R., Aryanezhad, M.B., Safaei, N., Azaron, A., (2005). “Solving a dynamic cell formation problem using metaheuristics”, Applied Mathematics and Computation, 170(2): 761-780.

[8]    Saidi-Mehrabad, M., Safaei, N., (2007). “A new model of dynamic cell formation by a neural approach,” The International Journal of Advanced Manufacturing Technology, 33(9): 1001-1009.

[9]    Bajestani, M.A., Rabbani, M., Rahimi-Vahed, A.R., Baharian Khoshkhou., G., (2009). “A multi-objective scatter search for a dynamic cell formation problem”, Computers & Operations Research, 36(3): 777-794.

[10] Safaei, N., Tavakkoli-Moghaddam, R., (2009). “Integrated multi-period cell formation and subcontracting production planning in dynamic cellular manufacturing systems”, International Journal of Production Economics, 120(2): 301-314.

[11] Rafiee, K., Rabbani, M., Rafiei, H., Rahimi-Vahed, A., (2011). “A new approach towards integrated cell formation and inventory lot sizing in an unreliable cellular manufacturing system”, Applied Mathematical Modelling, 35(4): 1810-1819.

[12] Tavakkoli-Moghaddam, R., Ranjbar-Bourani, M., Amin, G.R., Siadat, A., (2012). “A cell formation problem considering machine utilization and alternative process routes by scatter search,” Journal of Intelligent Manufacturing, 23(4): 11-27.

[13] Kia, R., Baboli, A., Javadian, N., Tavakkoli-Moghaddam, R., Kazemi, M., Khorrami, J., (2012). “Solving a group layout design model of a dynamic cellular manufacturing system with alternative process routings, lot splitting and flexible reconfiguration by simulated annealing”, Computers & Operations Research, 39(11): 2642-2658.

[14] Kia, R., Shirazi, H., Javadian, N., Tavakkoli-Moghaddam, R., (2013). “A multi-objective model for designing a group layout of a dynamic cellular manufacturing system”, Journal of Industrial Engineering International, 9: 1-14.

[15] Kia, R., Javidian, N., Paydar, M.M., Saidi-Mehrabad, M., (2013). “A simulated annealing for intra-cell layout design of dynamic cellular manufacturing systems with route selection, purchasing machines and cell reconfiguration”, Asia-Pacific Journal of Operational Research, 30(4): 1-41.

[16] Sakhaii, M., Tavakkoli-Moghaddam, R., Bagheri, M., Vatani, B., (2016). “A robust optimization approach for an integrated dynamic cellular manufacturing system and production planning with unreliable machines”, Applied Mathematical Modelling, 40(1): 169-191.

[17] Renna, P., Ambrico, M., (2015). “Design and reconfiguration models for dynamic cellular manufacturing to handle market changes”, International Journal of Computer Integrated Manufacturing, 28(2): 170-186.

[18] Savsar, M., (2000). “Reliability analysis of a flexible manufacturing cell” Reliability Engineering & System Safety, 67(2): 147-152.

[19] Savsar, M. Aldaihani, M., (2008). “Modeling of machine failures in a flexible manufacturing cell with two machines served by a robot” Reliability Engineering & System Safety, 93(10): 1551-1562.

[20] Das, K., Lashkari, R.S., Sengupta, S., (2007). “Machine reliability and preventive maintenance planning for cellular manufacturing systems”, European Journal of Operational Research, 183(1): 162-180.

[21] Das, K., Lashkari, R.S., Sengupta, S., (2007). “Reliability consideration in the design and analysis of cellular manufacturing systems”, International Journal of Production Economics, 105(1): 243-262.

[22] Das, K., (2008). “A comparative study of exponential distribution vs Weibull distribution in machine reliability analysis in a CMS design” Computers & Industrial Engineering, 54(1): 12-33.

[23] Safaei, N., Saidi-Mehrabad, M., Jabal-Ameli, M.S., (2008). “A hybrid simulated annealing for solving an extended model of dynamic cellular manufacturing system”, European Journal of Operational Research, 185(2): 563-592.

[24] Saxena, L.K., Jain, P.K., (2011). “Dynamic cellular manufacturing systems design—a comprehensive model” The International Journal of Advanced Manufacturing Technology, 53(1-4): 11-34.

[25] Aghajani, A., Didehbani, S.A., Zadahmad, M., Seyedrezaei, M.H., Mohsenian, O., (2014). “A multi-objective mathematical model for cellular manufacturing systems design with probabilistic demand and machine reliability analysis”, The International Journal of Advanced Manufacturing Technology, 75(5-8): 755-770.

[26] Jabal Ameli, M.S., Arkat, J., Barzinpour, F., (2008). “Modelling the effects of machine breakdowns in the generalized cell formation problem”, The International Journal of Advanced Manufacturing Technology, 39(7): 838-850.

[27] Jouzdani, J., Barzinpour, F., Shafia, M.A., Fathian, M., (2014). “Applying simulated annealing to a generalized considering alternative routings and machine reliability”, Asia-Pacific Journal of Operational Research, 31(4): 1-26.

[28] Shirzadi, S., Tavakkoli-Moghaddam, R., Kia, R., Mohammadi, M., (2017). “A multi-objective imperialist competitive algorithm for integrating intra-cell layout and processing route reliability in a cellular manufacturing system”, International Journal of Computer Integrated Manufacturing, 30(8): 839-855.

[29] Chern, M.S., (1992). “On the computational complexity of reliability redundancy allocation in a series system”, Operations Research Letters, vol. 11(5): 309-315.

[30] Yang, X.S., Susash, D., (2009). “Cuckoo Search via Levy flights”, In Proceedings Of The Nabic - World Congress On Nature & Biologically, Inspired Computing, 210-214.

[31] Yang, X.S., (2014). “Cuckoo search and firefly algorithm: Theory and applications” Springer, 516: 49-62.

[32] Maghsoudlou, H., Afshar-Nadjafi, B., Niaki, S.T.A., (2016). “A multi-objective invasive weeds optimization algorithm for solving multi-skill multi-mode resource constrained project scheduling problem”, Computers & Chemical Engineering, 88: 157-169.

[33] Kundu, D., Suresh, K., Ghosh, S., Das, S., Panigrahi, B.K., Das, S., (2011). “Multi-objective optimization with artificial weed colonies”, Information Sciences, 181(12): 2441-2454.

[34] Taguchi, G., (1986). “Introduction to quality engineering: designing quality into products and processes”.

[35] Roy, R.K., (2010). “A Primer on the Taguchi Method, Second Edition: Society of Manufacturing Engineers”,

[36] Guilani, P.P., Azimi, P., Niaki, S.T.A., Niaki, S.A.A., (2016). “Redundancy allocation problem of a system with increasing failure rates of components based on Weibull distribution: A simulation-based optimization approach,” Reliability Engineering & System Safety, 152: 187-196.

[37] Maghsoudlou, H., Kahag, M.R., Niaki, S.T.A., Pourvaziri, H., (2016). “Bi-objective optimization of a three-echelon multi-server supply-chain problem in congested systems: Modeling and solution”, Computers & Industrial Engineering, 99: 41-62.

[38] Karimi, N., Zandieh, M., Karamooz, H.R., (2010). “Bi-objective group scheduling in hybrid flexible flowshop: A multi-phase approach”, Expert Systems with Applications, 37(6): 4024-4032.

[39] Jolai, F., Asefi, H., Rabiee, M., Ramezani, P., (2013). “Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem”, Scientia Iranica, 20(3): 861-872.

[40] Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V., (2007). “Evolutionary algorithms for solving multi-objective problems”, Springer, 515-545.

[41] Askin, R.G., Estrada, S., (1999) “Investigation of cellular manufacturing practices”, Handbook of cellular manufacturing systems, 25-34.