ارائه یک مدل ریاضی با رویکرد بهینه سازی استوار برای طراحی سیستم تولید سلولی پویا با در نظرگیری ماشین آلات چندکاره

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشکده صنایع دانشگاه صنعتی شریف، تهران.

2 دانشجوی کارشناسی ارشد مهندسی صنایع دانشگاه صنعتی شریف، تهران.

چکیده

عدم قطعیت یکی از موضوعات مهم در سیستم­های تولیدی می­باشد. عدم وجود اطلاعات کافی و انعطاف در نیاز مشتری منجر به ایجاد عدم قطعیت پارامترها می­شود. در این مطالعه یک رویکرد بهینه­سازی استوار برای مدلسازی عدم قطعیت در سیستم تولید سلولی ارائه شده است. استواری مدل ارائه شده باعث شده است تا جواب بدست آمده به ازای تمامی مقادیر پارامترهای غیرقطعی، شدنی بودن خود را حفظ نماید و در این محیط غیر قطعی به دنبال یافتن جواب بهینه باشد. علاوه بر این خرابی ماشین­آلات چندکاره مورد تحلیل قرار گرفته است. انتخاب ابزار به گونه­ای انجام می‌شود که ماشین­های دارای نرخ خرابی بالا کمتر مورد استفاده قرار می­گیرد و لذا متوسط هزینه مربوط به تعمیرات را کاهش می­دهد. از دیگر ویژگی­های مدل ارائه شده، در نظرگیری هزینه­های پیکربندی (جابه­جایی بین سلولی و درون سلولی)، پیکربندی مجدد، نصب و قطع و مصرف ابزار در محیطی پویا می­باشد. مدل ارائه شده با استفاده از تکنیک­های خطی­سازی به مدلی خطی تبدیل شده­است. پس از کدنویسی مدل ارائه شده، با استفاده از نرم­افزار گمز به تحلیل­هایی از جمله بررسی مقادیر بهینه و زمان حل هر یک از مدل­های خطی و غیرخطی و تحلیل حساسیت روی پارامترهای مدل پرداخته شده است. بر اساس نتایج بدست آمده، تاثیر اصلی تعادل حجم کاری بر روی تعیین توالی عملیات قطعات و قرارگیری ماشین­آلات در سلول­ها می­باشد. همچنین هزینه مصرف ابزار بیشتر از سایر توابع هدف از عدم قطعیت ناشی از مقدار تقاضا متاثر شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

a new robust optimization approach to solve a dynamic cellular manufacturing system in presence of multi-functional machines

نویسندگان [English]

  • Majid Rafiee 1
  • Atieh Mohammadi talab 2
1 Department of Industrial Engineering, Sharif University of technology, Tehran, Iran
2 Department of Industrial Engineering, Sharif University of technology, Tehran, Iran
چکیده [English]

Parameter uncertainty is one of the most concerning issues in manufacturing systems. Information insufficiency and also flexibility in the customer needs are main reasons of the uncertainty. In this study a robust optimization approach has been implemented in order to cope with uncertainty in a cellular manufacturing system. The solution obtained using this robust model remains feasible even optimal in every uncertainty level. Moreover multi0functional machines’ reliability is considered in proposed mathematical model. Machine tool selection is done based on the machine reliability. Other features of proposed model are consideration of inter-intra cell formation, cells’ reconfiguration and tools’ install-uninstallation costs. The proposed model is linearized and solved using the Gams optimization package. Based on the obtained results, machine loading volume impacts on the part process routing and also the machine intra-cell layout. Moreover, tool consumption cost is the most sensitive term to the model uncertainty.     

کلیدواژه‌ها [English]

  • Cellular manufacturing system
  • machine breakdown
  • multi-function machines
  • Robust optimization
[1]     Mitrofanov, S., (1966). “Scientific Principles of Group Technology, Part I”, National Lending Library of Science and Technology, Boston, MA
[2]     Burbidge, J.L., (1975). The introduction of group technology: Heinemann London.
[3]     Deep, K., Singh, P.K., (2015). “Design of robust cellular manufacturing system for dynamic part population considering multiple processing routes using genetic algorithm”, Journal of Manufacturing Systems, 35: 155-163.
[4]     Renna, P.,  Ambrico, M., (2015) “Design and reconfiguration models for dynamic cellular manufacturing to handle market changes”, International Journal of Computer Integrated Manufacturing,  28: 170-186.
[5]     Esmailnezhad, B., Fattahi, P., Kheirkhah, A.S., (2015). “A stochastic model for the cell formation problem considering machine reliability," Journal of Industrial Engineering International,  1-15.
[6]     Yadollahi, M.S., Mahdavi, I., Paydar, M.M., Jouzdani, J., (2014). “Design a bi-objective mathematical model for cellular manufacturing systems considering variable failure rate of machines”, International Journal of Production Research, 52: 7401-7415.
[7]     Javadi, B., Jolai, F., Slomp, J., Rabbani, M., Tavakkoli-Moghaddam, R., (2013). “An integrated approach for the cell formation and layout design in cellular manufacturing systems”, International Journal of Production Research, 51: 6017-6044.
[8]     R. Kia, Shirazi, H., Javadian, N., Tavakkoli-Moghaddam, R., (2013). “A multi-objective model for designing a group layout of a dynamic cellular manufacturing system”, Journal of Industrial Engineering International, 9: 1-14.
[9]     Saidi-Mehrabad, M., Paydar, M.M., Aalaei, A., “Production planning and worker training in dynamic manufacturing systems”, Journal of Manufacturing Systems, 32: 308-314.
[10] Rafiei, H., Ghodsi, R., (2013). “A bi-objective mathematical model toward dynamic cell formation considering labor utilization”, Applied Mathematical Modelling, 37: 2308-2316.
[11] Bagheri, M., Bashiri, M., (2014). “A new mathematical model towards the integration of cell formation with operator assignment and inter-cell layout problems in a dynamic environment”, Applied Mathematical Modelling, vol. 38: 1237-1254.
[12] M.M. Paydar, Saidi-Mehrabad, M., Kia, R., (2013). “Designing a new integrated model for dynamic cellular manufacturing systems with production planning and intra-cell layout”, International Journal of Applied Decision Sciences,  6: 117-143.
[13] Dalfard, V.M., “New mathematical model for problem of dynamic cell formation based on number and average length of intra and intercellular movements”, Applied Mathematical Modelling, 37: 1884-1896.
[14]    پایدار، م.م. سعیدی مهرآباد، م.، (1393). "طراحی یک مدل یکپارچه استوار دو‌هدفه زنجیره تأمین و آرایش سلولی مجازی پویا"، نشریه پژوهش های مهندسی صنایع در سیستم های تولید،2: 33-35.
[15] Zeidi, J.R., Javadian, N., Tavakkoli-Moghaddam, R., Jolai, F., “A hybrid multi-objective approach based on the genetic algorithm and neural network to design an incremental cellular manufacturing system”, Computers & Industrial Engineering, 66: 1004-1014.
[16] Arkat, J., Farahani, M.H., Ahmadizar, F., “Multi-objective genetic algorithm for cell formation problem considering cellular layout and operations scheduling”, International Journal of Computer Integrated Manufacturing, 25: 625-635.
[17] Tavakkoli-Moghaddam, R., Ranjbar-Bourani, M., Amin, G.R., Siadat, A., (2012). “A cell formation problem considering machine utilization and alternative process routes by scatter search”, Journal of Intelligent Manufacturing, 23: 1127-1139.
[18] Kia, R., Baboli, A., Javadian, N., Tavakkoli-Moghaddam, R., Kazemi, M., Khorrami, J., (2012). “Solving a group layout design model of a dynamic cellular manufacturing system with alternative process routings, lot splitting and flexible reconfiguration by simulated annealing”, Computers & Operations Research, 39: 2642-2658.
[19] Jolai, F., Tavakkoli-Moghaddam, R., Golmohammadi, A., Javadi, B., “An electromagnetism-like algorithm for cell formation and layout problem”, Expert Systems with Applications, 39: 2172-2182.
[20] Arkat, J., Farahani, M.H., Hosseini, L., “Integrating cell formation with cellular layout and operations scheduling”, The International Journal of Advanced Manufacturing Technology, 61: 637-647.
[21] Banerjee, I., Das, P., (2012). “Group technology based adaptive cell formation using predator–prey genetic algorithm”, Applied Soft Computing, 12: 559-572.
[22] Mahdavi, I., Aalaei, A., M.M. Paydar, Solimanpur, M., (2012). “A new mathematical model for integrating all incidence matrices in multi-dimensional cellular manufacturing system”, Journal of Manufacturing Systems, 31: 214-223.
[23] Javadian, N., Aghajani, A., Rezaeian, J., Sebdani, M.J.G., “A multi-objective integrated cellular manufacturing systems design with dynamic system reconfiguration”, The International Journal of Advanced Manufacturing Technology, 56: 307-317.
[24] Rafiee, K., Rabbani, M., Rafiei, H., Rahimi-Vahed, A.,  “A new approach towards integrated cell formation and inventory lot sizing in an unreliable cellular manufacturing system”, Applied Mathematical Modelling, 35: 1810-1819.
[25] Rezazadeh, H., Mahini, R., Zarei, M., (2011). “Solving a dynamic virtual cell formation problem by linear programming embedded particle swarm optimization algorithm”, Applied Soft Computing, 11: 3160-3169.
[26] Mahdavi, I., Aalaei, A., Paydar, M.M., Solimanpur, M., (2011) “Multi-objective cell formation and production planning in dynamic virtual cellular manufacturing systems”, International Journal of Production Research, 49: 6517-6537.
[27] Ghotboddini, M., Rabbani, M., Rahimian, H., (2011) “A comprehensive dynamic cell formation design: Benders’ decomposition approach”, Expert Systems with Applications,  38: 2478-2488.
[28] Arkat, J., Hosseini, L., Farahani, M.H., (2011). “Minimization of exceptional elements and voids in the cell formation problem using a multi-objective genetic algorithm”, Expert Systems with Applications, 38: 9597-9602.
[29] Chung, S.H., Wu, T.H., Chang, C.C., (2011). “An efficient tabu search algorithm to the cell formation problem with alternative routings and machine reliability considerations”, Computers & Industrial Engineering, 60: 7-15.
[30] Solimanpur, M., Foroughi, A., “A new approach to the cell formation problem with alternative processing routes and operation sequence”, International Journal of Production Research, 49: 5833-5849.
[31] Deljoo, V., Mirzapour Al-e-hashem, S., Deljoo, F., Aryanezhad, M., (2010). “Using genetic algorithm to solve dynamic cell formation problem”, Applied Mathematical Modelling, 34: 1078-1092.
[32] Mahdavi, I., Aalaei, A., Paydar, M.M., Solimanpur, M.,  "Designing a mathematical model for dynamic cellular manufacturing systems considering production planning and worker assignment," Computers & Mathematics with Applications, vol. 60, pp. 1014-1025, 2010.
[33] Safaei, N.,  Banjevic, D.,  Jardine, A.K., (2010). “Impact of the use-based maintenance policy on the performance of cellular manufacturing systems”, International Journal of Production Research, 48: 2233-2260.
[34] Solimanpur, M., Saeedi, S., Mahdavi, I., (2010). “Solving cell formation problem in cellular manufacturing using ant-colony-based optimization”, The International Journal of Advanced Manufacturing Technology, 50: 1135-1144.
[35] Safaei,  N., Tavakkoli-Moghaddam, R., (2009). “Integrated multi-period cell formation and subcontracting production planning in dynamic cellular manufacturing systems,” International Journal of Production Economics, 120: 301-314..
[36] Defersha, F.M., Chen, M., (2006). “A comprehensive mathematical model for the design of cellular manufacturing systems”, International Journal of Production Economics, 103: 767-783.
[37] Dantzig, G.B., (1955). “Linear programming under uncertainty”, Management science, 1: 197-206.
[38] Charnes, A., Cooper, W.W., (1959). “Chance-constrained programming”, Management science, 6: 73-79.
[39] Bertsimas, D., Thiele, A., (2006). “Robust and data-driven optimization: Modern decision-making under uncertainty”, INFORMS tutorials in operations research: models, methods, and applications for innovative decision making, 137.
[40] Bertsimas, D., Sim, M., (2004). “The price of robustness”, Operations research, 52: 35-53.