[1] Wagner, H.M., Whitin, T.M., (1958). Dynamic version of the economic lot size model, Management science, 5: 89 – 96.
[2] Gelders, L.F., Van Wassenhove, L.N., (1981). Production planning: a review, European Journal of Operational Research, 7: 101 – 110.
[3] Bahl, H.C., Ritzman, L.P., Gupta, J.N., (1987). OR Practice—Determining Lot Sizes and Resource Requirements: A Review, Operations Research, 35: 329 – 345.
[4] Karimi, B., Fatemi Ghomi, S.M.T., Wilson, J.M. (2003). The capacitated lot sizing problem: a review of models and algorithms, Omega, 31: 365 – 378.
[5] Ilgin, M.A., Gupta, S.M., (2010). Environmentally conscious manufacturing and product recovery (ECMPRO): a review of the state of the art, Journal of environmental management, 91: 563 – 591.
[6] Gupta, S.M. (2004). Remanufacturing control in multistage systems with stochastic recovery rates.
[7] Roy, A., Maity, K., Maiti, M., (2009). A production–inventory model with remanufacturing for defective and usable items in fuzzy-environment, Computers & Industrial Engineering, 56: 87 – 96.
[8] Kim, M.G., Yu, J.M., Lee, D.H., (2015). Solution algorithms for scheduling flow-shop-type remanufacturing systems, 53:1819–1831.
[9] Richter, K., Weber, J., (2001). The reverse Wagner/Whitin model with variable manufacturing and remanufacturing cost, International Journal of Production Economics, 71: 447 – 456.
[10] Golany, B., Yang, J., Yu, G., (2001). Economic lot-sizing with remanufacturing options, Iie Transactions, 33: 995 – 1003.
[11] Yang, J., Golany, B., Yu, G., (2005). A concave‐cost production planning problem with remanufacturing options, Naval Research Logistics (NRL), 52: 443 – 458.
[12] Teunter, R. H., Bayindir, Z. P., van den Heuvel, W. (2005). Dynamic lot sizing with product returns, Econometric Institute Research Papers, 17.
[13] Li, Y., Chen, J., Cai, X., (2006). Uncapacitated production planning with multiple product types, returned product remanufacturing and demand substitution, OR Spectrum, 28: 101 – 125.
[14] Pan, Z., Tang, J., Liu, O., (2009). Capacitated dynamic lot sizing problems in closed-loop supply chain, European Journal of Operational Research, 198: 810 – 821.
[15] Pineyro, P., Viera, O., (2010). The economic lot-sizing problem with remanufacturing and one-way substitution, International Journal of Production Economics, 124: 482 – 488.
[16] Zhang, J., Liu, X., Tu, Y.L., (2011). A capacitated production planning problem for closed-loop supply chain with remanufacturing, The International Journal of Advanced Manufacturing Technology, 54: 757 – 766.
[17] Corominas, A., Lusa, A., Olivella, J., (2012). A manufacturing and remanufacturing aggregate planning model considering a non-linear supply function of recovered products, Production Planning & Control, 23: 194 – 204.
[18] Chen, M., Abrishami, P., (2014). A mathematical model for production planning in hybrid manufacturing-remanufacturing systems. The International Journal of Advanced Manufacturing Technology, 71: 1187-1196.
[19] Li, X., Baki, F., Tian, P., Chaouch, B.A., (2014). A robust block-chain based tabu search algorithm for the dynamic lot sizing problem with product returns and remanufacturing. Omega, 42: 75-87.
[20] Baki, M.F., Chaouch, B.A., Abdul-Kader, W., (2014). A heuristic solution procedure for the dynamic lot-sizing problem with remanufacturing and product recovery. Computers & Operations Research, 43: 225-236.
[21] Lee, C.W., Doh, H.H., Lee, D.H., (2015). Capacity and production planning for a hybrid system with manufacturing and remanufacturing facilities. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229: 1645-1653.
[22] Sifaleras, A., Konstantaras, I., (2015). General variable neighborhood search for the multi-product dynamic lot-sizing problem in closed-loop supply chain. Electronic Notes in Discrete Mathematics, 47: 69-76.
[23] Parsopoulos, K.E., Konstantaras, I., Skouri, K. (2015). Metaheuristic optimization for the single-item dynamic lot sizing problem with returns and remanufacturing. Computers & Industrial Engineering, 83: 307-315.
[24] Jing, Y., Li, W., Wang, X., Deng, L., (2016). Production planning with remanufacturing and back-ordering in a cooperative multi-factory environment. International Journal of Computer Integrated Manufacturing, 29: 692-708.
[25] Mohammadi, M., Ghomi, S.F., Karimi, B., Torabi, S.A., (2010). Rolling-horizon and fix-and-relax heuristics for the multi-product multi-level capacitated lotsizing problem with sequence-dependent setups. Journal of Intelligent Manufacturing, 21: 501 – 510.
[26] Ramezanian, R., Saidi-Mehrabad, M., Teimoury, E., (2013). A mathematical model for integrating lot-sizing and scheduling problem in capacitated flow shop environments, The International Journal of Advanced Manufacturing Technology, 66: 347 – 361.
[27] Clark, A.R., Clark, S.J., (2000). Rolling-horizon lot-sizing when set-up times are sequence-dependent, International Journal of Production Research, 38: 2287 – 2307.
[28] Mercé, C., Fontan, G., (2003). MIP-based heuristics for capacitated lotsizing problems, International Journal of Production Economics, 85: 97 – 111.
[29] Mohammadi, M., Ghomi, S.F., Jafari, N., (2011). A genetic algorithm for simultaneous lotsizing and sequencing of the permutation flow shops with sequence-dependent setups. International Journal of Computer Integrated Manufacturing, 24: 87-93.
[30] بهنامیان، جواد، دیانت، فاطمه (1395). مقایسهی سه روش فراابتکاری برای کمینه نمودن زمان چرخه در مسئلهی زمانبندی جریان کارگاهی مختلط دورهای با درنظرگرفتن اثر یادگیری، نشریهی پژوهشی مهندسی صنایع در سیستمهای تولید، 4(8): 105-117.
[31] Holland, J.H., (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. U Michigan Press.
[32] Taguchi, G., Chowdhury, S., Taguchi, S., (2000). Robust engineering, New York, Hard-Bound, 24(2): 141-142.