برنامه ریزی تولید چندمرحله ای در زنجیره تأمین حلقه بسته همراه با راه اندازی های وابسته به توالی و انتقال راه‌اندازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 هیات علمی دانشکده مهندسی صنایع دانشگاه صنعتی امیرکبیر

2 دانشکده مهندسی صنایع-دانشگاه صنعتی امیرکبیر

چکیده

در این مقاله مسأله­ی برنامه­ریزی تولید چند مرحله­ای، چند محصولی، چند پریودی با راه اندازی‌های وابسته به توالی در زنجیره تأمین حلقه بسته مطالعه می‎‏شود. فرآیندهای تولید و تولید مجدد هر محصول به­طور متوالی درنظرگرفته شده­اند و اگر ماشین برای پردازش محصول موردنظر آماده باشد، هر دو فرآیند قابل اجرا هستند. برای فرمول­بندی مسأله  یک مدل برنامه­ریزی عدد صحیح مختلط ارایه شده  و به­منظور حل مدل مذکور چهار الگوریتم ابتکاری با استفاده از رویکرد افق متحرک و یک الگوریتم ژنتیک توسعه داده شده است. دو روش ابتکاری اول برمبنای مدل­ اصلی توسعه­ی یافته‏اند، اما به­منظور حل مسأله در ابعاد بزرگ، دو روش ابتکاری دیگر و الگوریتم ژنتیک، مبتنی بر مدل ساده­سازی شده می­باشند که از حذف توالی‏های غیرترتیبی فضای جواب مدل­ اصلی حاصل شده است. جهت تنظیم پارامترهای الگوریتم ژنتیک ارایه شده، روش تاگوچی به‏کارگرفته شده است. نتایج عددی نشان‏دهنده‏ی کارایی الگوریتم فراابتکاری ارایه‏شده نسبت به الگوریتم‏های ابتکاری مبتنی‏بر برنامه‏ریزی عددصحیح مختلط هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Multi-Stage Production Planning with Sequence-Dependent Setups and Setup Carry Over In Closed-Loop Supply Chain

نویسنده [English]

  • S. Torkaman 2
2 Department of Industrial Engineering,Amirkabir University of Technology
چکیده [English]

This paper studies multi-stage, multi-product, multi-period production planning problem with sequence dependent setups in closed-loop supply chain. Manufacturing and remanufacturing processes of each product are regarded consequently, and both of them could be performed if machine is ready for processing corresponding product. To formulate the problem, a mixed-integer programming (MIP) model is presented and four heuristic algorithms using rolling horizon and a genetic algorithm are developed to solve the model. First two heuristic algorithms are developed based on the original model, but to solve the large instances the other two heuristics and the genetic algorithm are based on the simplified model, which is obtained by elimination of non-permutation sequences of original model solution space. To calibrate the parameters of the proposed genetic algorithm, Taguchi method is applied. The numerical results indicate the efficiency of the proposed meta-heuristic algorithm against MIP-based heuristic algorithms.     

کلیدواژه‌ها [English]

  • Production planning Closed-loop supply chain Sequence dependent setup Setup carry over Rolling horizon
  • Flow shop Genetic Algorithm
[1]     Wagner, H.M., Whitin, T.M., (1958). Dynamic version of the economic lot size model, Management science, 5: 89 – 96.
[2]     Gelders, L.F., Van Wassenhove, L.N., (1981). Production planning: a review, European Journal of Operational Research, 7: 101 – 110. 
[3]     Bahl, H.C., Ritzman, L.P., Gupta, J.N., (1987). OR Practice—Determining Lot Sizes and Resource Requirements: A Review, Operations Research, 35: 329 – 345. 
[4]     Karimi, B., Fatemi Ghomi, S.M.T., Wilson, J.M. (2003). The capacitated lot sizing problem: a review of models and algorithms, Omega, 31: 365 – 378.
[5]     Ilgin, M.A., Gupta, S.M., (2010). Environmentally conscious manufacturing and product recovery (ECMPRO): a review of the state of the art, Journal of environmental management, 91: 563 – 591.
[6]     Gupta, S.M. (2004). Remanufacturing control in multistage systems with stochastic recovery rates.
[7]     Roy, A., Maity, K., Maiti, M., (2009). A production–inventory model with remanufacturing for defective and usable items in fuzzy-environment, Computers & Industrial Engineering, 56: 87 – 96. 
[8]     Kim, M.G., Yu, J.M., Lee, D.H., (2015). Solution algorithms for scheduling flow-shop-type remanufacturing systems, 53:1819–1831.
[9]     Richter, K., Weber, J., (2001). The reverse Wagner/Whitin model with variable manufacturing and remanufacturing cost, International Journal of Production Economics, 71: 447 – 456. 
[10]  Golany, B., Yang, J., Yu, G., (2001). Economic lot-sizing with remanufacturing options, Iie Transactions, 33: 995 – 1003. 
[11] Yang, J., Golany, B., Yu, G., (2005). A concave‐cost production planning problem with remanufacturing options, Naval Research Logistics (NRL), 52: 443 – 458. 
[12] Teunter, R. H., Bayindir, Z. P., van den Heuvel, W. (2005). Dynamic lot sizing with product returns, Econometric Institute Research Papers, 17. 
[13] Li, Y., Chen, J., Cai, X., (2006). Uncapacitated production planning with multiple product types, returned product remanufacturing and demand substitution, OR Spectrum, 28: 101 – 125. 
[14] Pan, Z., Tang, J., Liu, O., (2009). Capacitated dynamic lot sizing problems in closed-loop supply chain, European Journal of Operational Research, 198: 810 – 821. 
[15] Pineyro, P., Viera, O., (2010). The economic lot-sizing problem with remanufacturing and one-way substitution, International Journal of Production Economics, 124: 482 – 488. 
[16] Zhang, J., Liu, X., Tu, Y.L., (2011). A capacitated production planning problem for closed-loop supply chain with remanufacturing, The International Journal of Advanced Manufacturing Technology, 54: 757 – 766. 
[17] Corominas, A., Lusa, A., Olivella, J., (2012). A manufacturing and remanufacturing aggregate planning model considering a non-linear supply function of recovered products, Production Planning & Control, 23: 194 – 204. 
[18] Chen, M., Abrishami, P., (2014). A mathematical model for production planning in hybrid manufacturing-remanufacturing systems. The International Journal of Advanced Manufacturing Technology, 71: 1187-1196.
[19] Li, X., Baki, F., Tian, P., Chaouch, B.A., (2014). A robust block-chain based tabu search algorithm for the dynamic lot sizing problem with product returns and remanufacturing. Omega, 42: 75-87.
[20] Baki, M.F., Chaouch, B.A., Abdul-Kader, W., (2014). A heuristic solution procedure for the dynamic lot-sizing problem with remanufacturing and product recovery. Computers & Operations Research, 43: 225-236.
[21] Lee, C.W., Doh, H.H., Lee, D.H., (2015). Capacity and production planning for a hybrid system with manufacturing and remanufacturing facilities. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229: 1645-1653.
[22] Sifaleras, A., Konstantaras, I., (2015). General variable neighborhood search for the multi-product dynamic lot-sizing problem in closed-loop supply chain. Electronic Notes in Discrete Mathematics, 47: 69-76.
[23] Parsopoulos, K.E., Konstantaras, I., Skouri, K. (2015). Metaheuristic optimization for the single-item dynamic lot sizing problem with returns and remanufacturing. Computers & Industrial Engineering, 83: 307-315.
[24] Jing, Y., Li, W., Wang, X., Deng, L., (2016). Production planning with remanufacturing and back-ordering in a cooperative multi-factory environment. International Journal of Computer Integrated Manufacturing, 29: 692-708.
[25] Mohammadi, M., Ghomi, S.F., Karimi, B., Torabi, S.A., (2010). Rolling-horizon and fix-and-relax heuristics for the multi-product multi-level capacitated lotsizing problem with sequence-dependent setups. Journal of Intelligent Manufacturing, 21: 501 – 510.
[26] Ramezanian, R., Saidi-Mehrabad, M., Teimoury, E., (2013). A mathematical model for integrating lot-sizing and scheduling problem in capacitated flow shop environments, The International Journal of Advanced Manufacturing Technology, 66: 347 – 361. 
[27] Clark, A.R., Clark, S.J., (2000). Rolling-horizon lot-sizing when set-up times are sequence-dependent, International Journal of Production Research, 38: 2287 – 2307. 
[28] Mercé, C., Fontan, G., (2003). MIP-based heuristics for capacitated lotsizing problems, International Journal of Production Economics, 85: 97 – 111. 
[29]  Mohammadi, M., Ghomi, S.F., Jafari, N., (2011). A genetic algorithm for simultaneous lotsizing and sequencing of the permutation flow shops with sequence-dependent setups. International Journal of Computer Integrated Manufacturing, 24: 87-93.
[30]              بهنامیان، جواد، دیانت، فاطمه (1395). مقایسه‏ی سه روش فراابتکاری برای کمینه نمودن زمان چرخه در مسئله‏ی زمان‏بندی جریان کارگاهی مختلط دوره‏ای با درنظرگرفتن اثر یادگیری، نشریه‏ی پژوهشی مهندسی صنایع در سیستم‏های تولید، 4(8): 105-117.
[31] Holland, J.H., (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. U Michigan Press.
[32] Taguchi, G., Chowdhury, S., Taguchi, S., (2000).  Robust engineering, New York, Hard-Bound, 24(2): 141-142.