نمودارهای کنترلی MHWMA برای پایش پروفایل خطی چندگانه چندمتغیره

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری مهندسی صنایع، گروه مهندسی صنایع، دانشکدۀ مهندسی صنایع و سیستم‌ها، دانشگاه صنعتی اصفهان، اصفهان، ایران

2 استادیار گروه مهندسی صنایع، دانشکدۀ فنی و مهندسی، دانشگاه یزد، یزد، ایران

10.22084/ier.2025.31437.2211

چکیده

در بسیاری از فرآیندهای صنعتی پیچیده، کیفیت محصول را می‌توان بااستفاده‌از مدل پروفایل خطی چندگانه چندمتغیره توصیف نمود که شامل روابط رگرسیونی میان متغیرهای پاسخ وابسته و متغیرهای توضیحی می‌باشد. دراین پژوهش، سه روش کنترلی جدید مبتنی‌بر نمودار MHWMA برای پایش پروفایل‌های خطی چندگانه چندمتغیره پیشنهاد شده است. این نمودارها با بهره‌گیری از ساختار میانگین متحرک وزنی یکنواخت، قابلیت شناسایی تغییرات ناگهانی در پارامترهای مدل پروفایل را دارا می‌باشند. سه‌روش پیشنهادی تحت عنوان‌های MHWMA، MHWMA توسعه‌یافته، و MHWMA/χ²، به‌گونه‌ای طراحی شده‌اند که هریک با رویکردی خاص به‌تحلیل ضرایب مدل و ساختار پراکندگی پروفایل‌ها می‌پردازند. به‌منظور ارزیابی عملکرد این روش‌ها، شاخص CVRL دریک مطالعه‌ی شبیه‌سازی مورد استفاده قرار گرفت و نتایج به‌دست آمده نشان داد روش­های پیشنهادی، به­ویژه روش  دراغلب موارد، قادربه تشخیص سریع انحرافات می­باشند و عملکرد مناسبی دارند. همچنین، تحلیل حساسیت نسبت‌به پارامترهای کلیدی مؤثر در طراحی نمودارهای کنترلی، نظیر مقدار پارامتر هموارسازی و اندازه نمونه انجام شده و نتایج حاکی ازآن بود که انتخاب مقادیر کوچک­تر پارامتر هموارسازی و افزایش اندازه نمونه، سرعت تشخیص انحرافات را بهبود می­بخشد. درادامه، اثر تخمین پارامترهای پروفایل در فاز ۱ بر عملکرد نمودارها در فاز ۲ به‌صورت جداگانه بررسی شده و نتایج شبیه‌‌سازی نشان داد که تخمین پارامترها در فاز اول می‌تواند تأثیر معناداری بر قابلیت تشخیص انحرافات در فاز 2 داشته باشد و سرعت شناسایی انحرافات در فاز 2 را کاهش دهد. درنهایت، جهت ارزیابی کاربردپذیری روش‌های پیشنهادی درمحیط واقعی، یک مطالعه موردی صنعتی بررسی شده و اثربخشی نمودارهای کنترلی پیشنهادی درشرایط عملیاتی نیز مورد تأیید قرار گرفت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

MHWMA Control Charts for Monitoring Multivariate Multiple Linear Profiles

نویسندگان [English]

  • Zohre Ghasemi 1
  • Ahmad Ahmadi Yazdi 2
1 PhD Graduate in Industrial Engineering, Department of Industrial and system Engineering, Faculty of Engineering, Isfahan University of Technology (IUT), Isfahan, Iran
2 Assistant Professor, Department of Industrial Engineering, Faculty of Engineering, Yazd University, Yazd, Iran
چکیده [English]

In many industrial processes, quality can be characterized using a multivariate multiple linear profile model, which describes the regression relationships between response variables and explanatory variables. This paper proposes three control schemes based on the Multivariate Homogeneously Weighted Moving Average (MHWMA) chart for monitoring multivariate multiple linear profiles. These charts utilize a uniformly weighted moving average structure, enabling the detection of shifts in the profile parameters. The proposed methods—MHWMA, Extended MHWMA, and MHWMA/χ²—are designed to monitor the regression coefficients and covariance matrix of the profiles. The performance of these methods was evaluated using the CVRL metric in a simulation study, and the results showed that the MHWMA/χ² method outperforms other methods in detecting deviations. Additionally, a sensitivity analysis was conducted to assess the impact of design parameters, such as the smoothing constant and sample size, on the change detection. Furthermore, the effect of parameter estimation in Phase I on the performance of the control charts in Phase II was investigated. The simulation results indicated that parameter estimation in Phase I can significantly affect the ability to detect shifts in Phase II. Finally, a practical application of the new control chart is illustrated using a real case study.

کلیدواژه‌ها [English]

  • Profile Monitoring
  • MHWMA Control Chart
  • Multivariate Multiple Linear Profile
  • CVRL Metric
  • Noorossana, R., Saghaei, A. & Amiri, A., (2011). “Statistical analysis of profile monitoring”. Wiley Online Library. https://doi.org./10.1002/9781118071984 .
  • Kang, L. & Albin, S.L., (2000). “On-line monitoring when the process yields a linear profile”. Journal of quality Technology, 32(4): 418-426. https://doi.org/10.1080/00224065.2000.11980027 .
  • Kim, K., Mahmoud, M.A. & Woodall, W.H., (2003). “On the monitoring of linear profiles”. Journal of Quality Technology, 35(3): 317-328. https://doi.org/10.1080/00224065.2003.11980225 .
  • Noorossana, R., Amiri, A., Vaghefi, S.A. & Roghanian, E., (2004). “Monitoring quality characteristics using linear profile”. Proceedings of the 3rd international industrial engineering conference. Tehran, Iran.
  • Mahmoud, M.A. & Woodall, W.H., (2004). “Phase I analysis of linear profiles with calibration applications”. Technometrics, 46(4): 380-391. https://doi.org/10.1198/004017004000000455 .
  • Zou, C., Zhang, Y. & Wang, Z., (2006). “A control chart based on a change-point model for monitoring linear profiles”. IIE transactions, 38(12): 1093-1103. https://doi.org/10.1080/07408170600728913 .
  • Mahmoud, M.A., Parker, P.A., Woodall, W.H. & Hawkins, D.M., (2007). “A change point method for linear profile data”. Quality and Reliability Engineering International, 23(2): 247-268. https://doi.org/10.1002/qre.788 .
  • Mahmoud, M.A., (2008). “Phase I analysis of multiple linear regression profiles”. Communications in Statistics—Simulation and Computation®, 37(10): 2106-2130. https://doi.org/10.1080/03610910802305017 .
  • Jensen, W.A., Birch, J.B. & Woodall, W.H., (2008). “Monitoring correlation within linear profiles using mixed models”. Journal of Quality Technology, 40(2): 167-183. https://doi.org/10.1080/00224065.2008.11917723 .
  • Amiri, A., Eyvazian, M., Zou, C. & Noorossana, R., (2012). “A parameters reduction method for monitoring multiple linear regression profiles”. The International Journal of Advanced Manufacturing Technology, 58(5): 621-629. https://doi.org/10.1007/s00170-011-3406-3 .
  • Kazemzadeh, R.B., Noorossana, R. & Amiri, A., (2008). “Phase I monitoring of polynomial profiles”. Communications in Statistics—Theory and Methods, 37(10): 1671-1686. https://doi.org/10.1080/03610920701691714 .
  • Zou, C., Tsung, F. & Wang, Z., (2007). “Monitoring general linear profiles using multivariate exponentially weighted moving average schemes”. Technometrics, 49(4): 395-408. https://doi.org/10.1198/004017007000000164 .
  • Abdella, G.M., Kim, J., Al-Khalifa, K.N. & Hamouda, A.M., (2016). “Double EWMA‐based polynomial quality profiles monitoring”. Quality and Reliability Engineering International, 32(8): 2639-2652. https://doi.org/10.1002/qre.2093 .
  • Williams, J.D., Woodall, W.H. & Birch, J.B., (2007). “Statistical monitoring of nonlinear product and process quality profiles”. Quality and Reliability Engineering International, 23(8): 925-941. https://doi.org/10.1002/qre.858 .
  • Walker, E. & Wright, S.P., (2002). “Comparing curves using additive models”. Journal of Quality Technology, 34(1): 118-129. https://doi.org/10.1080/00224065.2002.11980134 .
  • Williams, J.D., Woodall, W.H. & Birch, J.B., (2003). “Phase I monitoring of nonlinear profiles”. quality and productivity research conference, Yorktown Heights, New York.
  • Parker, P.A., Morton, M., Draper, N. & Line, W., (2001). “A single-vector force calibration method featuring the modern design of experiments”. 39th Aerospace sciences meeting and exhibit. https://doi.org/10.2514/6.2001-170 .
  • Eyvazian, M., Noorossana, R., Saghaei, A. & Amiri, M., (2011). “Phase II monitoring of multivariate multiple linear regression profiles”. Quality and Reliability Engineering International, 27(3): 281-296. https://doi.org/10.1002/qre.1119 .
  • Zou, C., Ning, X. & Tsung, F., (2012). “LASSO-based multivariate linear profile monitoring”. Annals of operations research, 192(1): 3-19. https://doi.org/10.1007/s10479-010-0797-8 .
  • Ghashghaei, R. & Amiri, A., (2017). “Sum of squares control charts for monitoring of multivariate multiple linear regression profiles in phase II”. Quality and Reliability Engineering International, 33(4): 767-784. https://doi.org/10.1002/qre.2055 .
  • Ghashghaei, R., Amiri, A. & Khosravi, P., (2019). “New control charts for simultaneous monitoring of the mean vector and covariance matrix of multivariate multiple linear profiles”. Communications in Statistics-Simulation and Computation, 48(5): 1382-1405. https://doi.org/10.1080/03610918.2017.1414246 .
  • Kazemzadeh, R.B., Noorossana, R. & Ayoubi, M., (2015). “Change point estimation of multivariate linear profiles under linear drift”. Communications in Statistics-Simulation and Computation, 44(6): 1570-1599. https://doi.org/10.1080/03610918.2013.824093 .
  • Amiri, A., Saghaei, A., Mohseni, M. & Zerehsaz, Y., (2014). “Diagnosis aids in multivariate multiple linear regression profiles monitoring”. Communications in Statistics-Theory and Methods, 43(14): 3057-3079. https://doi.org/10.1080/03610926.2012.694543 .
  • Ahmadi Yazdi, A., Hamadani, A.Z., Amiri, A. & Grzegorczyk, M., (2019). “A new Bayesian multivariate exponentially weighted moving average control chart for phase II monitoring of multivariate multiple linear profiles”. Quality and Reliability Engineering International, 35(7): 2152-2177. https://doi.org/10.1002/qre.2496 .
  • Wang, Y.H.T. & Zhan, S.H., (2024). “Monitoring autocorrelated multivariate multiple linear profiles”. Quality and Reliability Engineering International, 40(1): 619-643. https://doi.org/10.1002/qre.2694 .
  • Rahimi, S. B., Amiri, A., Khoo, M.B.C. & Shadman, A., (2022). “Simultaneous monitoring of mean vector and covariance matrix of auto‐correlated multivariate multiple linear profiles”. Quality and Reliability Engineering International, 38(7): 3513-3542. https://doi.org/10.1002/qre.3149 .
  • Khalili, S. & Noorossana, R., (2022). “Online monitoring of autocorrelated multivariate linear profiles via multivariate mixed models”. Quality Technology & Quantitative Management, 19(3): 319-340. https://doi.org/10.1080/16843703.2021.2015834 .
  • Sabahno, H. & Amiri, A., (2023). “New statistical and machine learning based control charts with variable parameters for monitoring generalized linear model profiles”. Computers & Industrial Engineering, 184: 109562. https://doi.org/10.1016/j.cie.2023.109562 .
  • Zhang, T., Wang, G.A., He, Z. & Mukherjee, A., (2024). “Service failure monitoring via multivariate multiple linear regression profile schemes with dimensionality reduction”. Decision Support Systems, 178: 114122. https://doi.org/10.1016/j.dss.2023.114122 .
  • Sabahno, H. & Eriksson, M., (2024). “Variable parameters memory-type control charts for simultaneous monitoring of the mean and variability of multivariate multiple linear regression profiles”. Scientific Reports, 14(1): 9288. https://doi.org/10.1038/s41598-024-59549-8 .
  • Ghasemi, Z., Yazdi, A.A. & Hamadani, A.Z., (2025). “New Methods for Phase II Monitoring of Multivariate Multiple Linear Profiles”. Quality and Reliability Engineering International, 41(5): 2093-2110. https://doi.org/10.1002/qre.3756 .
  • ناصری، پوریا، عباسی، مرتضی و آتشگر، کریم، (1402). «طراحی مدلی برای پایش پروفایلی کیفیت تأمین‌کننده با ریسک». نشریه پژوهش­های مهندسی صنایع در سیستمهای تولید، 11(22): 139-157. https://doi.org/10.22084/IER.2023.5425 .
  • ادیب­فر، سعید و نورالسناء، رسول، (1401). «توسعه شاخص قابلیت فرآیند برای پروفایل خطی ساده در فرآیند دومرحله‌ای». نشریه پژوهش­های مهندسی صنایع در سیستم‌های تولید، 10(20): 183-191. https://doi.org/10.22084/ier.2022.5047 .
  • Abbas, N., (2018). “Homogeneously weighted moving average control chart with an application in substrate manufacturing process”. Computers & Industrial Engineering, 120: 460-470. https://doi.org/10.1016/j.cie.2018.05.009 .
  • Adegoke, N.A., Abbasi, S.A., Smith, A.N.H., Anderson, M.J. & PAWLEY, M.D.M., (2019). “A multivariate homogeneously weighted moving average control chart”. IEEE Access, 7: 9586-9597. https://doi.org/10.1109/ACCESS.2019.2891988 .
  • Hotelling, H., (1947). “Multivariate quality control illustrated by air testing of sample bombsights”. Techniques of statistical analysis, 111-184. https://doi.org/10.1007/978-1-4613-0179-0_3 .
  • Pignatiello Jr, J.J. & Runger, G.C., (1990). “Comparisons of multivariate CUSUM charts”. Journal of quality technology, 22(3): 173-186. https://doi.org/10.1080/00224065.1990.11979237 .
  • Crosier, R.B., (1988). “Multivariate generalizations of cumulative sum quality-control schemes”. Technometrics, 30(3): 291-303. https://doi.org/10.1080/00401706.1988.10488402 .
  • Yousefi, S., Maleki, M.R., Salmasnia, A. & Anbohi, M.K., (2023). “Performance of multivariate homogeneously weighted moving average chart for monitoring the process mean in the presence of measurement errors”. Journal of Advanced Manufacturing Systems, 22(01): 27-40. https://doi.org/10.1142/S0219686723500026 .
  • Adegoke, N., Riaz, M., Ganiyu, K.O. & Abbasi, S.A., (2021). “One-sided and two one-sided multivariate homogeneously weighted moving charts for monitoring process mean”. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2891988 .
  • Abbas, N., Riaz, M., Ahmad, S., Abid, M. & Zaman, B., (2020). “On the efficient monitoring of multivariate processes with unknown parameters”. Mathematics, 8(5): 823. https://doi.org/10.3390/math8050823 .
  • Pieters, L., Malela-Majika, J., Human, S. & Castagliola, P., (2023). “A new multivariate extended homogeneously weighted moving average monitoring scheme incorporated with a support vector machine”. Quality and Reliability Engineering International, 39(6): 2454-2475. https://doi.org/10.1002/qre.3356 .
  • Bhat, S.V. & Malagavi, C., (2021). “R-Posterior Control Charts for Process Variation”. International Journal of Research in Engineering and Science (IJRES), 9(6):14-33. https://doi.org/10.6084/m9.figshare.14506732.v1 .
  • Jensen, W.A., Allison Jones-Farmer, L., Champ, C. W. & Woodall, W. H., (2006). “Effects of parameter estimation on control chart properties: a literature review”. Journal of Quality Technology, 38(4): 349-364. https://doi.org/10.1080/00224065.2006.11917761 .
  • Zhang, M., Peng, Y., Schuh, A., Megahed, F. M. & Woodall, W.H., (2013). “Geometric charts with estimated control limits”. Quality and Reliability Engineering International, 29(2): 209-223. https://doi.org/10.1002/qre.1304 .
  • Aly, A.A., Mahmoud, M.A. & Hamed, R., (2016). “The performance of the multivariate adaptive exponentially weighted moving average control chart with estimated parameters”. Quality and Reliability Engineering International, 32(3): 957-967. https://doi.org/10.1002/qre.1806 .
  • Noorossana, R., Eyvazian, M. & Vaghefi, A., (2010). “Phase II monitoring of multivariate simple linear profiles”. Computers & Industrial Engineering, 58(4): 563-570. https://doi.org/10.1016/j.cie.2009.12.003 .