مدل‌سازی ریاضی برای مسأله مدیریت سفارش‌ها و برنامه‌ریزی تولید در سیستم‌های ترکیبی (MTS/MTO) با درنظر گرفتن فرآیند نصب و راه‌اندازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد مهندسی صنایع، گروه بهینه‌سازی، دانشکده مهندسی صنایع، دانشگاه علم و صنعت، تهران، ایران

2 استاد گروه بهینه‌سازی، دانشکده مهندسی صنایع، دانشگاه علم و صنعت ایران، تهران، ایران

10.22084/ier.2025.30418.2193

چکیده

با تنوع روزافزون تقاضای مشتریان و تغییرات پویا در زنجیره‌تأمین، سیستم‌های تولید ترکیبی (MTS/MTO) به‌عنوان راهکاری استراتژیک برای ایجاد تعادل میان تولید انبوه و سفارشی‌سازی شناخته شده‌اند. این پژوهش یک مدل ریاضی دوهدفه را ارائه می‌دهد که هدف اول آن حداکثرسازی سود سیستم و هدف دوم آن حداقل‌سازی نارضایتی مشتریان در محیط تولید ترکیبی است. مدل پیشنهادی، تولید هم‌زمان محصولات MTS و MTO را با درنظر گرفتن محدودیت‌های ظرفیت تولید و منابع مشترک یکپارچه می‌کند. یکی از ویژگی‌های برجسته مدل، درنظر گرفتن فرآیند نصب و راه‌اندازی برای محصولات است که رویکرد جامعی برای برنامه‌ریزی تولید و اجرای فرآیندها فراهم می‌آورد. این مدل در یک مطالعه موردی بر روی یک شرکت تولیدکننده بالابرهای صنعتی پیاده‌سازی شد. نتایج نشان‌داد که با افزایش تقاضا، سود سیستم افزایش می‌یابد، اما نارضایتی مشتریان نیز به‌دلیل محدودیت ظرفیت تولید و نصب و راه‌اندازی و درنتیجه رد سفارش‌ها و فروش ازدست‌رفته، رشد قابل‌توجهی دارد. همچنین، در شرایط تقاضای بالا، تمرکز بیشتر بر محصولات MTS باعث افزایش بهره‌وری در این بخش، اما کاهش توانایی تأمین سفارش‌های MTO شد. یافته‌های این پژوهش بر اهمیت برنامه‌ریزی دقیق تولید، بهبود مدیریت ظرفیت‌ها و افزایش انعطاف‌پذیری در مواجهه با تغییرات تقاضا تأکید می‌کند. مدل ارائه‌شده، ابزاری مؤثر برای تصمیم‌گیرندگان جهت بهبود بهره‌وری و رضایت مشتریان در محیط‌های تولید ترکیبی فراهم می‌کند و می‌تواند به‌عنوان چارچوبی برای ارتقای سیستم‌های تولید در صنایع مختلف استفاده شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Mathematical Model for an Order Management and Production Planning Problem Considering Installation in Hybrid (MTS-MTO) Systems

نویسندگان [English]

  • Seyed Mohamad Javad Sadeghi 1
  • Ahmad Makui 2
1 M.Sc. in Industrial Engineering, Systems Optimization Division, Faculty of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
2 Professor, Systems Optimization Division, Faculty of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

With the increasing diversity of customer demands and the dynamic changes in supply chains, hybrid production systems (MTS-MTO) have emerged as a strategic solution for balancing mass production and customization. This study presents a bi-objective mathematical model aimed at maximizing system profit and minimizing customer dissatisfaction in a hybrid production environment. The proposed model integrates the simultaneous production of MTS and MTO products while considering production capacity constraints and shared resources. A key feature of the model is the inclusion of the installation and commissioning process for products, providing a comprehensive approach to production planning and process execution. The model was implemented in a case study of an industrial hoist manufacturing company. Results indicated that with increasing demand, system profit improved; however, customer dissatisfaction also grew significantly due to production and installation capacity limitations, leading to rejected orders and lost sales. Additionally, under high demand conditions, a greater focus on MTS products enhanced productivity in this segment but reduced the system's ability to fulfill MTO orders. The findings underscore the importance of precise production planning, improved capacity management, and increased flexibility in addressing demand fluctuations. The proposed model serves as an effective tool for decision-makers to enhance productivity and customer satisfaction in hybrid production environments and can be utilized as a framework for improving production systems across various industries.

کلیدواژه‌ها [English]

  • Order management
  • Hybrid Production System (MTS-MTO)
  • Production Planning
  • Installation and Commissioning. 
  • Tarhan, İ., & Oğuz, C. (2022). A matheuristic for the generalized order acceptance and scheduling problem. J. Oper. Res., 299(1), 87–103. https://doi.org/10.1016/j.ejor.2021.08.024
  • Sarvestani, H. K., Zadeh, A., Seyfi, M., et al. (2019). Integrated order acceptance and supply chain scheduling problem with supplier selection and due date assignment. Soft Comput., 75, 72–87. https://doi.org/10.1016/j.asoc.2018.10.045
  • Beemsterboer, B., Land, M., & Teunter, R. (2017). Flexible lot sizing in hybrid make-to-order/make-to-stock production planning. J. Oper. Res., 260(3), 1014–1023. https://doi.org/10.1016/j.ejor.2017.01.015
  • Peeters, K., & van Ooijen, H. (2020). Hybrid make-to-stock and make-to-order systems: A taxonomic review. J. Prod. Res., 58(15), 4659–4688. https://doi.org/10.1080/00207543.2020.1778204
  • Kuthambalayan, T. S., & Bera, S. (2020). A review of the literature on mixed make-to-stock/make-to-order production systems: Major findings and directions for future research. J. Serv. Oper. Manag., 37(3), 372–406. https://doi.org/10.1504/IJSOM.2020.111038
  • Sato, Y., Maeda, H., Toshima, R., Nagasawa, K., Morikawa, K., & Takahashi, K. (2023). Switching decisions in a hybrid MTS/MTO production system comprising multiple machines considering setup. J. Prod. Econ., 263, 108877. https://doi.org/10.1016/j.ijpe.2023.108877
  • Xiong, S., Feng, Y., & Huang, K. (2020). Optimal MTS and MTO hybrid production system for a single product under the cap-and-trade environment. Sustainability, 12(6), 2426. https://doi.org/10.3390/su12062426
  • Pereira, D. F., Oliveira, J. F., & Carravilla, M. A. (2022). Merging make-to-stock/make-to-order decisions into sales and operations planning: A multi-objective approach. Omega (Westport), 107, 102561. https://doi.org/10.1016/j.omega.2021.102561
  • Ellabban, A., & Abdelmaguid, T. (2019). Optimized production control policy for hybrid MTS-MTO glass tube manufacturing using simulation-based optimization. In 2019 8th Int. Conf. Ind. Technol. Manag. (ICITM); Cambridge, UK. IEEE. https://doi.org/10.1109/ICITM.2019.8710685
  • Kalantari, M., Rabbani, M., & Ebadian, M. (2011). A decision support system for order acceptance/rejection in hybrid MTS/MTO production systems. Math. Model., 35(3), 1363–1377. https://doi.org/10.1016/j.apm.2010.09.015
  • Rafiei, H. & Rabbani, M., (2011). Order partitioning and order penetration point location in hybrid
    make-to-stock/make-to-order production contexts. *Computers & Industrial Engineering, 61, pp.
    550-560. https://doi.org/10.5267/j.ijiec.2015.12.004
  • Rafiei, H., & Rabbani, M. (2012). Capacity coordination in hybrid make-to-stock/make-to-order production environments. J. Prod. Plann., 50, 773–789. https://doi.org/10.1016/j.cie.2011.04.010
  • Wang, Z., Qi, Y., Cui, H., & Zhang, J. (2019). A hybrid algorithm for order acceptance and scheduling problem in make-to-stock/make-to-order industries. Ind. Eng., 127, 841–852. https://doi.org/10.1016/j.cie.2018.10.021
  • Jalali, M. S., Ghomi, S. F., & Rabbani, M. (2020). A system dynamics approach towards analysis of hybrid make-to-stock/make-to-order production systems. Eng. Manag. Syst., 19(1), 143–163. https://doi.org/10.7232/iems.2020.19.1.143
  • Abedi, A., & Zhu, W. (2020). An advanced order acceptance model for hybrid production strategy. Journal of manufacturing systems55, 82-93. https://doi.org/10.1016/j.jmsy.2020.02.012
  • Bortolini, M., Faccio, M., Gamberi, M., & Pilati, F. (2019). MTO/MTS policy optimization for sheet metal plate parts in an ATO environment. Procedia Cirp81, 1046-1051. https://doi.org/10.1016/j.procir.2019.03.249
  • Wang, C., Yang, C. & Zhang, T., (2023). Order planning with an outsourcing strategy for a make-to-order/make-to-stock production system using particle swarm optimization with a self-adaptive genetic operator. *Computers & Industrial Engineering, 182, p. 109420. https://doi.org/10.1016/j.cie.2023.109420
  • Sadeghi Ahangar, S., & Rabbani, M. (2024). A scenario-based decision framework for the order promising process in hybrid MTS/MTO production systems considering product substitution. Journal of Industrial and Production Engineering, 1-18. https://doi:1080/21681015.2024.2400991
  • Aghaei, J., Amjady, N., & Shayanfar, H. A. (2011). Multi-objective electricity market clearing considering dynamic security by lexicographic optimization and augmented epsilon constraint method. Appl. Soft Comput., 11(4), 3846–3858. https://doi.org/10.1016/j.asoc.2011.02.022
  • Cui H, Luo X., (2017). An improved Lagrangian relaxation
    approach to scheduling steelmaking-continuous casting
    process
    . Comput Chem Eng. 106:133–146. https://doi:10.1016/j.compchemeng.2017.05.026
  • Fisher ML. The Lagrangian relaxation method for solving integer programming problems. Manag Sci.
    1981;27(1):1–18. https://doi: 10.1287/mnsc.27.1.1
  • Rius-Sorolla G. (2020). Lagrangian relaxation of the generic materials and operations planning model. Central Eur J Operations Res. 28(1): 105–123. https://doi: 10.1007/s10100-018-0593-0
  • Klincewicz JG, Luss H. (1986). A Lagrangian relaxation heuristic
    for capacitated facility location with single-source
    constraints
    . J Oper Res Soc. 37(5):495–500. https://doi:10.1057/jors.1986.84