تصمیم‌گیری انتخاب انبار متقاطع پایدار با توسعه یک چارچوب جدید مبتنی‌بر یادگیری ماشین و مجموعه نوتروسوفیک تک‌ارزشی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی صنایع، گروه مهندسی صنایع، دانشکدۀ فنی و مهندسی، دانشگاه شاهد، تهران، ایران

2 استاد گروه مهندسی صنایع، دانشکدۀ فنی و مهندسی، دانشگاه شاهد، تهران، ایران

10.22084/ier.2025.30115.2185

چکیده

انبارهای متقاطع یک استراتژی لجستیکی برای جمع‌آوری، مرتب‌ کردن و توزیع بهینه محصولات مختلف از تأمین‌کنندگان به مشتریان می‌باشند. شناسایی معیارهای کلیدی در توسعه و انتخاب مکان برای انبارهای متقاطع یکی از بحث‌های مهم در مدیریت شبکه‌های لجستیکی می‌باشد. انبار‌های متقاطع با تسهیل جابه‌جایی سریع کالاها از تأمین‌کنندگان به مشتریان، نقش مهمی در زنجیره‌تأمین ایفا می‌کنند. هدف این تحقیق، ارائه یک مدل تصمیم‌گیری چندمعیاره یکپارچه برای ارزیابی و انتخاب انبار متقاطع می‌باشد. در قالب یک رویکرد یکپارچه از روش‌های کاهش بعد و تصمیم‌گیری چندمعیاره مبتنی‌بر مجموعه نوتروسوفیک تک‌ارزشی استفاده شده است. در این تحقیق برای کاهش بعد ماتریس تصمیم و تعیین وزن معیارها به ارائه یک روش جدید مبتنی‌بر روش تقریب منیفولد یکنواخت و طرح‌ریزی و ضریب همبستگی پرداخته شد. همچنین یک روش  TODIMبرمبنای فاصله کای‌دو در محیط نوتروسوفیک تک‌ارزشی توسعه یافته شد و برای رتبه‌بندی انبارهای متقاطع استفاده ‌شد. در این تحقیق به شناسایی 18 معیار در 6 دسته اصلی پرداخته شد که شامل معیارهای پایداری و انرژی در بررسی انبارهای متقاطع نیز می‌باشد. نتایج نشان‌دهنده عملکرد مناسب رویکرد پیشنهادی در انتخاب انبارهای متقاطع با درنظر گرفتن معیارهای کمی و کیفی می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Sustainable Cross-Dock Selection Decision Making with a Development of a New Framework Based on Machine Learning and Single-Valued Neutrosophic Set

نویسندگان [English]

  • Ali Qorbani 1
  • Seyed Meysam Mousavi 2
1 Ph.D. Student Industrial Engineering, Department of Industrial Engineering, Faculty of Engineering and Technology, Shahed University, Tehran, Iran
2 Professor, Department of Industrial Engineering, Faculty of Engineering and Technology, Shahed University, Tehran, Iran
چکیده [English]

Cross-docking is a logistics strategy used to collect, sort, and optimally distribute various products from suppliers to customers. Identifying key criteria for the development and location selection of cross-docks is a crucial topic in logistics network management. Choosing a cross-dock location involves both technical and managerial considerations. Cross-docks play a significant role in the supply chain by facilitating the rapid movement of goods from suppliers to customers. The purpose of this research is to provide an integrated multi-criteria decision-making model for cross-dock evaluation and selection. This study employs an integrated approach combining dimensionality reduction methods and multi-criteria decision-making based on a single-valued Neutrosophic set. To reduce the dimension of the decision matrix and determine the weight of the criteria, we introduced a new method based on the Uniform Manifold Approximation and Projection (UMAP) method and correlation coefficient. Additionally, a TODIM method, developed based on the chi-square distance in the single-valued Neutrosophic environment, was used to rank cross-docks. Through a literature review, we identified 18 criteria in 6 main categories, including sustainability and energy criteria for cross-docks. The results demonstrate the effectiveness of the proposed approach in selecting cross-docks, considering both quantitative and qualitative criteria.

کلیدواژه‌ها [English]

  • Cross-Dock
  • Single-Valued Neutrosophic Set
  • Multi-Criteria Decision Making
  • TODIM Method
  • Uniform Manifold Approximation and Projection Method
  • Stephan, K., N. Boysen, and J. Cross-docking, (2011). Control, 22(1): p. 129-137. https://doi.org/10.1007/s00187-011-0124-9.
  • Boysen, N. and M. Fliedner, (2010). Cross dock scheduling: Classification, literature review and research agenda. Omega, 38(6): p. 413-422. https://doi.org/10.1016/j.omega.2009.10.008.
  • Bartholdi, J. J. and K. R. Gue, ( 2004). The best shape for a crossdock. Transportation science, 38(2): 235-244. https://doi.org/10.1287/trsc.1030.0077.
  • Mousavi, S. M., R. Tavakkoli-Moghaddam, and F. Jolai, (2013). A possibilistic programming approach for the location problem of multiple cross-docks and vehicle routing scheduling under uncertainty. Engineering Optimization, 45(10): 1223-1249. https://doi.org/10.1080/0305215X.2012.729053.
  • Rajabzadeh, M. and S. Mousavi, (2023). A new interval-valued fuzzy optimization model for truck scheduling in a multi-door cross-docking system by considering transshipment and flexible dock doors extra cost. Iranian Journal of Fuzzy Systems, 20(6): p. 63-84. https://doi.org/10.22111/ijfs.2023.41416.7203.
  • Rajabzadeh, M., S.M. Mousavi, and F. Azimi, (2024). A new gray optimization model for disposing or re-commercializing unsold goods in reverse logistics networks with a cross-docking center. Kybernetes, https://doi.org/10.1108/K-12-2022-1637.
  • عظیمی، ف.، س.م. موسوی، م. رجب‌زاده، (2019). یک مدل برنامه‌ریزی خاکستری برای اسقاط یا تجاری‌سازی مجدد کالاها در عملیات لجستیک معکوس با درنظر گرفتن انبار متقاطع. نشریه پژوهش‌های مهندسی صنایع در سیستمهای تولید. 7(14)163-177 : https://doi.org/10.22084/ier.2019.19811.1881.
  • رجب‌زاده، م.، موسوی، س.م.، (2023). یک مدل برنامه‌ریزی امکانی دوهدفه برای زمان‌بندی کامیون در یک سیستم انبار متقاطع با درهای منعطف با درنظر گرفتن زمان حمل‌ونقل درون انبار. نشریه پژوهش‌های مهندسی صنایع در سیستمهای تولید. 10(21): 119-133. https://doi.org/10.22084/ier.2023.27388.2115.
  • EVCİOĞLU, H.E. and M. KABAK, (2023). Supplier selection in supply chain network using MCDM methods. Sigma Journal of Engineering and Natural Sciences, 41(1): p. 1-16. https://doi.org/10.14744/sigma.2023.00001.
  • Jayaraman, V. and A. Ross, (2003). A simulated annealing methodology to distribution network design and management. European Journal of Operational Research, 144(3): p. 629-645. https://doi.org/10.1016/S0377-2217(02)00153-4.
  • Mousavi, S.M. and B. Vahdani, (2016). Cross-docking location selection in distribution systems: a new intuitionistic fuzzy hierarchical decision model. International Journal of computational intelligence Systems, 9(1): p. 91-109. https://doi.org/10.1080/18756891.2016.1144156.
  • Mousavi, S.M., (2019). A new interval-valued hesitant fuzzy pairwise comparison–compromise solution methodology: an application to cross-docking location planning. Neural Computing and Applications, 31: p. 5159-5173. https://doi.org/10.1007/s00521-018-3355-y.
  • Mousavi, S.M., et al., (2019). A new decision model for cross-docking center location in logistics networks under interval-valued intuitionistic fuzzy uncertainty. Transport, 34(1): 30-40. https://doi.org/10.3846/transport.2019.7442.
  • Nong, T. N.-M., (2022). A hybrid model for distribution center location selection. The Asian Journal of Shipping and Logistics, 38(1): 40-49. https://doi.org/10.1016/j.ajsl.2021.10.003.
  • Puška, A., A. Štilić, and Ž. Stević, (2023). A Comprehensive Decision Framework for Selecting Distribution Center Locations: A Hybrid Improved Fuzzy SWARA and Fuzzy CRADIS Approach. Computation, 11(4): 73. https://doi.org/10.3390/computation11040073.
  • Agrebi, M. and M. Abed, (2021). Decision-making from multiple uncertain experts: case of distribution center location selection. Soft Computing, 25(6): 4525-4544. https://doi.org/10.1007/s00500-020-05461-y.
  • Ak, M.F. and A. Derya, (2021). Selection of humanitarian supply chain warehouse location: A case study based on the MCDM methodology. Avrupa Bilim ve Teknoloji Dergisi, (22): 400-409. https://doi.org/10.31590/ejosat.849896.
  • Kieu, P.T., et al., (2021). A spherical fuzzy analytic hierarchy process (SF-AHP) and combined compromise solution (CoCoSo) algorithm in distribution center location selection: A case study in agricultural supply chain. Axioms, 10(2): p. 53. https://doi.org/10.3390/axioms10020053.
  • Karaşan, A. and C. Kahraman, (2019). A novel intuitionistic fuzzy DEMATEL–ANP–TOPSIS integrated methodology for freight village location selection. Journal of Intelligent & Fuzzy Systems, 36(2): p. 1335-1352. https://doi.org/10.3233/JIFS-17169.
  • Stević, Ž., et al., (2020). Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Computers & industrial engineering, 140: p. 106231. https://doi.org/10.1016/j.cie.2019.106231.
  • Beheshtinia, M. A., et al., (2022). Evaluating and ranking digital stores’ suppliers using TOPKOR method. International Journal of Engineering, 35(11): p. 2155-2163. https://doi.org/10.5829/ije.2022.35.11b.10.
  • Mukhametzyanov, I., (2021). Specific character of objective methods for determining weights of criteria in MCDM problems: Entropy, CRITIC and SD. Decision Making: Applications in Management and Engineering, 4(2): 76-105. https://doi.org/10.31181/dmame210402076i.
  • Wang, T.-C. and H.-D. Lee, (2009). Developing a fuzzy TOPSIS approach based on subjective weights and objective weights. Expert systems with applications, 36(5): 8980-8985. https://doi.org/10.1016/j.eswa.2008.11.035.
  • Şahin, M., (2021). Location selection by multi-criteria decision-making methods based on objective and subjective weightings. Knowledge and Information Systems, 63(8): 1991-2021. https://doi.org/10.1007/s10115-021-01588-y.
  • Song, C., Z. Xu, and J. Hou, (2021). An improved TODIM method based on the hesitant fuzzy psychological distance measure. International Journal of Machine Learning and Cybernetics, 12(4): p. 973-985. https://doi.org/10.1007/s13042-020-01215-2.
  • Luo, M., G. Zhang, and L. Wu, (2022). A novel distance between single valued neutrosophic sets and its application in pattern recognition. Soft Computing, 26(21): 11129-11137. https://doi.org/10.1007/s00500-022-07407-y.
  • Karabašević, D., et al., (2020). A novel extension of the TOPSIS method adapted for the use of single-valued neutrosophic sets and hamming distance for e-commerce development strategies selection. Symmetry, 12(8): p. 1263. https://doi.org/10.3390/sym12081263.
  • Ali, M., Z. Hussain, and M.-S. Yang, (2022). Hausdorff distance and similarity measures for single-valued neutrosophic sets with application in multi-criteria decision making. Electronics, 12(1): p. 201. https://doi.org/10.3390/electronics12010201.
  • Ren, H., S. Xiao, and H. Zhou, (2019). A chi-square distance-based similarity measure of single-valued neutrosophic set and applications. Infinite Study. http://dx.doi.org/10.15837/ijccc.2019.1.3430.
  • Gomes, L. and M. Lima, (1991). TODIMI: Basics and application to multicriteria ranking. Comput. Decis. Sci, 16(3-4): 1-16. https://fcds.cs.put.poznan.pl/FCDS/Old/1991.htm.
  • Irvanizam, I., et al., (2020). An Extended Fuzzy TODIM Approach for MultipleAttribute DecisionMaking with DualConnection Numbers. Advances in Fuzzy Systems, 1: p. 6190149. https://doi.org/10.1155/2020/6190149.
  • Lin, M., H. Wang, and Z. Xu, (2020). TODIM-based multi-criteria decision-making method with hesitant fuzzy linguistic term sets. Artificial Intelligence Review, 53: p. 3647-3671. https://doi.org/10.1007/s10462-019-09774-9.
  • Deng, X. and S. Qu, (2020). Cross-docking center location selection based on interval multi-granularity multicriteria group decision-making. Symmetry, 12(9): p. 1564. https://doi.org/10.3390/sym12091564.
  • Okatan, B.S., I. Peker, and B. Birdogan, (2019). An Integrated DEMATEL-ANP-VIKOR Approach for Food Distribution Center Site Selection: A Case Study of Georgia. Journal of Management Marketing and Logistics, 6(1): 10-20. https://doi.org/10.17261/Pressacademia.2019.1030.
  • Durak, İ., et al., (2017). Warehouse site selection in retail sector: application AHP (Analytical Hierarchy Process) and VIKOR methods. International Journal of Business and Management Invention (IJBMI), 6(12): 65-73. https://www.ijbmi.org/papers/Vol(6)12/Version-2/H0612026573.pdf.
  • Muerza, V., et al., (2024). Selection of an international distribution center location: A comparison between stand-alone ANP and DEMATEL-ANP applications. Research in Transportation Business & Management, 56: p. 101135. https://doi.org/10.1016/j.rtbm.2024.101135.
  • Wang, J., et al., (2024). Optimizing Cross-Dock Terminal Location Selection: A Multi-Step Approach Based on CI-DEA–IDOCRIW–MABAC for Enhanced Supply Chain Efficiency—A Case Study. Mathematics, 12(5): p. 736. https://doi.org/10.3390/math12050736.
  • Quynh, M.P., et al., (2020). Distribution center location selection using a novel multi criteria decision-making approach under interval neutrosophic complex sets: Infinite Study. http://dx.doi.org/10.5267/j.dsl.2020.2.001.
  • Wang, H., et al., (2010). Single valued neutrosophic sets. Infinite study. https://fs.unm.edu/SingleValuedNeutrosophicSets.pdf.
  • Gobinath, V., et al., (2025). Applications of Neutroscopic Sets in Science, the Humanities, and Education, in Data-Driven Modelling with Fuzzy Sets. CRC Press. 1-14. https://doi.org/10.1201/9781003487104.
  • Kara, K., et al., (2024). A single-valued neutrosophic-based methodology for selecting warehouse management software in sustainable logistics systems. Engineering applications of artificial intelligence, 129: 107626. https://doi.org/10.1016/j.engappai.2023.107626.
  • Kazimieras Zavadskas, E., R. Baušys, and M. Lazauskas, (2015). Sustainable assessment of alternative sites for the construction of a waste incineration plant by applying WASPAS method with single-valued neutrosophic set. Sustainability, 7(12): 15923-15936. https://doi.org/10.3390/su71215792.
  • Kotsiantis, S.B., I.D. Zaharakis, and P.E. Pintelas, (2006). Machine learning: a review of classification and combining techniques. Artificial Intelligence Review, 26: p. 159-190. https://doi.org/10.1007/s10462-007-9052-3.
  • Abdi, H. and L.J. Williams, (2010). Principal component analysis. Wiley interdisciplinary reviews: computational statistics, 2(4): 433-459. https://doi.org/10.1002/wics.101.
  • Mulla, F.R. and A.K. Gupta, (2022). A review paper on dimensionality reduction techniques. Journal of Pharmaceutical Negative Results: 1263-1272. https://doi.org/10.47750/pnr.2022.13.S03.198.
  • Trozzi, F., X. Wang, and P. Tao, (2021). UMAP as a dimensionality reduction tool for molecular dynamics simulations of biomacromolecules: A comparison study. The Journal of Physical Chemistry B, 125(19): 5022-5034. https://doi.org/10.1021/acs.jpcb.1c02081.
  • McInnes, L., J. Healy, and J. Melville, (2018). Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv: 1802.03426, https://doi.org/10.48550/arXiv.1802.03426.
  • Krishnan, A.R., et al., (2021). A modified CRITIC method to estimate the objective weights of decision criteria. Symmetry, 13(6): 973. https://doi.org/10.3390/sym13060973.
  • Becht, E., et al., (2019). Dimensionality reduction for visualizing single-cell data using UMAP. Nature biotechnology, 37(1): 38-44. https://doi.org/10.1038/nbt.4314.
  • Elshabshery, A. and M. Fattouh, (2021). On some Information Measures of Single–Valued Neutrosophic Sets and their Applications in MCDM Problems. J. Eng. Res. Technol, 10(5): p. 406-415. https://doi.org/10.17577/IJERTV10IS050160.
  • Goyal, R.K., et al., (2022). Obtaining Crisp Priorities for Triangular and Trapezoidal Fuzzy Judgments. Syst. Sci. Eng., 41(1): p. 157-170. http://dx.doi.org/10.32604/csse.2022.018962.
  • Zhang, C., et al., (2023). Performance evaluation of technological service platform: A rough Z-number-based BWM-TODIM method. Expert Systems with Applications, 230: 120665. https://doi.org/10.1016/j.eswa.2023.120665.
  • Kahneman, D., (1979). Prospect theory: An analysis of decisions under risk. Econometrica, 47: p. 278. https://doi.org/10.2307/1914185.
  • Lourenzutti, R. and R.A. Krohling, (2014) The Hellinger distance in Multicriteria Decision Making: An illustration to the TOPSIS and TODIM methods. Expert Systems with Applications, 41(9): 4414-4421. https://doi.org/10.1016/j.eswa.2014.01.015.
  • Chang, J., et al., (2021). A probabilistic linguistic TODIM method considering cumulative probability-based Hellinger distance and its application in waste mobile phone recycling. Applied Intelligence, 51: p. 6072-6087. https://doi.org/10.1007/s10489-021-02185-w.
  • Hussain, Z., S. Abbas, and M.-S. Yang, (2022). Distances and similarity measures of q-rung orthopair fuzzy sets based on the Hausdorff metric with the construction of orthopair fuzzy TODIM. Symmetry, 14(11): 2467. https://doi.org/10.3390/sym14112467.
  • Perlibakas, V., (2004). Distance measures for PCA-based face recognition. Pattern recognition letters, 25(6): p. 711-724. https://doi.org/10.1016/j.patrec.2004.01.011.
  • Ye, J., (2013). Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment. International Journal of General Systems, 42(4): 386-394. https://doi.org/10.1080/03081079.2012.761609.
  • Lu, Z., Y. Gao, and W. Zhao, (2020). A TODIM-based approach for environmental impact assessment of pumped hydro energy storage plant. Journal of Cleaner Production, 248: 119265. https://doi.org/10.1016/j.jclepro.2019.119265.