مدل‌سازی تصادفی انتخاب تأمین‌کننده تاب‌آور و تخصیص سفارش در شرایط جنگ، تحریم و پاندمی: تحلیل آن در شبکه بیزی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی صنایع، مجتمع دانشگاهی مدیریت و مهندسی صنایع، دانشگاه صنعتی مالک اشتر، تهران، ایران

2 دانشیار گروه مهندسی صنایع، مجتمع دانشگاهی مدیریت و مهندسی صنایع، دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده

اختلالاتی مانند جنگ، تحریم و پاندمی‌ها علاوه‌بر تأثیر روی تأمین‌­کنندگان و تولید­کننده؛ می‌­توانند برروی یکدیگر در ابتدای زنجیره یا بر تقاضای مشتری در انتهای زنجیره تأثیرگذار باشند. مدل‌سازی این روابط پیچیده با استفاده از شبکه بیزی انجام شده و میزان اثرگذاری اختلالات در هر نقطه از زنجیره را نشان می‌دهد. از نرخ تورم برای پیش‌­بینی و کاهش عدم قطعیت‌­های تقاضا استفاده می‌شود. قابلیت اطمینان تأمین‌کنندگان که در زنجیره‌تأمین بسیار اهمیت دارد در یک مدل برنامه‌ریزی تصادفی عدد صحیح مختلط دوهدفه با دو تابع هدف افزایش پراکندگی جغرافیایی و کاهش هزینه کل (حمل‌ونقل، خرید و سفارش­دهی و...) لحاظ می‌شود. در این مدل تأمین‌­کنندگان و تولیدکننده برای افزایش تاب‌آوری زنجیره‌تأمین مشارکت می‌­کنند. برای اولین‌بار مفهوم سطح تاب­‌آوری تأمین‌کننده پیشنهاد می‌­­شود. مدل ارائه شده برای تخصیص سفارش علاوه‌بر قیمت و سایر هزینه‌های سفارش‌دهی، هزینه بهبود سطح تاب­‌آوری تأمین‌کنندگان را نیز درنظر می­‌گیرد. همچنین سطح رضایت مشتری به‌صورت ضمنی با کاهش هزینه عدم ارضای تقاضا محاسبه می‌شود. به‌همین منظور یک مطالعه موردی در یکی از شرکت‌­های خودروسازی ایران انجام گرفت. برای اعتبارسنجی مدل پیشنهادی یک مثال عددی حل و تحلیل حساسیت آن انجام شد. برای کاهش سناریو از روش خوشه­‌بندی c-میانگین فازی و تحلیل متوازن اثر متقابل استفاده شد. مدل ارائه شده می­‌تواند تولیدکنندگان را برای تصمیم‌­گیری و برنامه‌­ریزی بهتر در مواجه با ریسک‌­ها و عدم قطعیت‌­های آینده آماده کند.‌

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Stochastic Modeling of Resilient Supplier Selection and Order Allocation Under Conditions of War, Sanctions, and Pandemic: An Analysis Using Bayesian Networks

نویسندگان [English]

  • Mohammad Khosroabadi 1
  • Jafar Gheidar-Kheljani 2
  • Mohammad Hosein Karimi-Gavareshki 2
1 PhD Candidate, Department of Industrial Engineering, Faculty of Industrial Engineering and Management, Malek Ashtar University of Technology, Tehran, Iran
2 Associate Professor, Department of Industrial Engineering, Faculty of Industrial Engineering and Management, Malek Ashtar University of Technology, Tehran, Iran
چکیده [English]

Disruptions such as war, sanctions, and pandemics not only impact suppliers and manufacturers but also influence each other at the beginning of the supply chain or affect customer demand at the end of the chain. This study employs Bayesian networks to model these complex relationships and demonstrate the extent of disruptions at each point in the supply chain. Inflation rates are utilized to predict and mitigate demand uncertainties. The reliability of suppliers, a critical aspect in supply chains, is incorporated into a bi-objective stochastic mixed-integer programming model with objectives of increasing geographical dispersion and reducing total costs (including transportation, purchasing, and ordering costs). In this model, suppliers and manufacturers collaborate to enhance supply chain resilience. For the first time, the concept of supplier resilience level is introduced. The proposed model for order allocation considers not only prices and other ordering costs but also the costs of improving suppliers' resilience levels. Additionally, customer satisfaction is implicitly calculated by reducing the cost of unmet demand. To validate the model, a case study was conducted at an automotive company in Iran, followed by a numerical example and sensitivity analysis. Scenario reduction was achieved using the fuzzy c-means clustering method and balanced impact analysis. The proposed model equips manufacturers with better decision-making and planning capabilities in the face of future risks and uncertainties.

  • https://www.cbi.ir/category/16994.aspx.
  • Hosseini, S., Ivanov, D. (2019). A new resilience measure for supply networks with
    the ripple effect considerations: A Bayesian network approach. Annals of Operations Research, 319, 581–607. https://doi.org/10.1007/s10479-019-03350-8
  • Kaur, H., Singh, S.P. (2021). Multi-stage hybrid model for supplier selection and order allocation considering disruption risks and disruptive technologies. International of journal Production Economics, 231, 107830. https://doi.org/10.1016/j.ijpe.2020.107830
  • Parkouhi, V., Safaei Ghadikolaei, A., and Fallah Lajim., H. (2019). Resilient supplier selection and segmentation in grey environment. Journal of Cleaner Production, 207, 1123-1137. https://doi.org/10.1016/j.jclepro.2018.10.007.
  • Rezaei, A., Aghsami, A., and Rabbani, M. (2021). Supplier selection and order allocation model with disruption and environmental risks in centralized supply chain. Int J Syst Assur Eng Manag, 12(6), 1036–1072. https://doi.org/10.1007/s13198-021-01164-1.
  • Mohammed, A., Harris, I., and Govindan, K. (2019). A hybrid MCDM-FMOO approach for sustainable supplier selection and order allocation. Int J Prod Econ, 217, 171–184. https://doi.org/10.1016/j.ijpe.2019.02.003
  • Kellner, F., Utz, S. (2019). Sustainability in supplier selection and order allocation: combining integer variables with Markowitz portfolio theory. J Clean Prod, 214, 462–474. https://doi.org/10.1016/j.jclepro.2018.12.315.
  • Mari, S.I., Memon, MS., Ramzan, M.B., Qureshi, S.M., and Iqbal, M.W. (2019).Interactive fuzzy multi criteria decision making approach for supplier selection and order allocation in a resilient supply chain.Mathematics, 7(2), 137. https://doi.org/10.3390/math7020137.
  • Rezaei, A., Rahiminezhad Galankashi, M., Mansoorzadeh, S., and Mokhatab Rafiei, F. (2020a) Supplier selection and order allocation with lean manufacturing criteria: an integrated MCDM and Bi-objective modelling approach. Engineering Management Journal, 32(4), 253–271. https://doi.org/10.1080/10429247.2020.1753490
  • Rezaei, S., Ghalehkhondabi, I., Rafiee, M., and Namdar Zanganeh, S. (2020b) Supplier selection and order allocation in CLSC configuration with various supply strategies under disruption risk. Operational Research Society of India, 57, 908–934. https://doi.org/10.1080/10429247.2020.1753490.
  • Khoshfetrat, S., Rahiminezhad, Galankashi, M., and Almasi, M. (2020). Sustainable supplier selection and order allocation: a fuzzy approach. Eng Optim, 52(9), 1494–1507.https: //doi.org/10.1080/0305215x.2019.1663 185.
  • Feng, J., Gong, Z. (2020). Integrated linguistic entropy weight method and multi-objective programming model for supplier selection and order allocation in a circular economy: a case study. J Clean Prod, 277, 122597. https://doi.org/10.1016/j.jclepro.2020. 122597.
  • Beiki, H., Seyedhosseini, S.V., Ponkratov, V., Olegovna Zekiy, A., and Ivanov, S. A. (2021) Addressing a sustainable supplier selection and order allocation problem by an integrated approach: a case of automobile manufacturing. J Indus Prod Eng, 38(4), 239-253. https://doi.org/10.1080/21681015.2021.1877202.
  • Mohammed, A,. Harris, I,. Soroka, A,. Naim, M,. Ramjaun, T,. Yazdani, M. (2021). Gresilient supplier assessment and order allocation planning. Ann Oper Res, 296(1), 335–362. https://doi.org/10.1007/s10479-020-03611-x
  • Bakhtiari Tavana, B., Rabieh, M., Pishvaee, M. S., and Esmaeili, M. (2021). A Stochastic Mathematical Programming Approach to Resilient Supplier Selection and Order Allocation Problem: A Case Study in Iran Khodro Supply Chain. International journal of science & technology, 30, 1796-1821. https://doi.org/ 10.24200/sci.2021.56020.4515
  • Kaur, H., Singh, S.P. (2021). Multi-stage hybrid model for supplier selection and order allocation considering disruption risks and disruptive technologies. International of journal Production Economics, 231, 107830. https://doi.org/10.1016/j.ijpe.2020.107830
  • Liu, D., L, Z., He, C., and Wang, C. (2021). Risk-Averse Co-Decision for Lower-Carbon Product Family Configuration and Resilient Supplier Selection. Journal of Sustainability, 14, 384. https://doi.org/10.1108/imds-01-2023-0007
  • Shao, Y., Barnes, D., Wu, C. (2022). Sustainable supplier selection and order allocation for multinational enterprises considering supply disruption in COVID-19 era. Australian Journal of Management, 1–39. https://doi.org/10.1177/03128962211066953.
  • Zhao, P., Ji, S., and Xue, Y. (2021). An integrated approach based on the decision-theoretic rough set for resilient-sustainable supplier selection and order allocation. International journal of cybernetics, systems and management sciences, 52(3), 774-808. https://doi.org/10.1108/K-11-2020-0821
  • Taghavi, S.M., Ghezavati, V., Mohammadi Bidhandi, H., and Mirzapour Al-e-Hashem, S.M.J. (2023). Green‑Resilient Supplier Selection and Order Allocation UnderDisruption by Utilizing Conditional Value at Risk: Mixed Response Strategies. Process Integration and Optimization for Sustainability, 7, 359–380. https://doi.org/10.1007/s41660-022-00298-4.
  • Nazari-Shirkouhi, S., Tavakoli, M., Govindan, K., and Mousakhani, S. (2023). A hybrid approach using Z-number DEA model and Artificial Neural Network for Resilient supplier selection. Expert Systems with Applications, 222, 119746. . https://doi.org/10.1016/j.eswa.2023.119746.
  • Chen, Z., Hammad, A.W.A., and Alyami, M. (2024). Building construction supply chain resilience under supply and demand uncertaintie. Automation in Construction, 158. 105190. https://doi.org/10.1016/j.autcon.2023.
  • Umar, M., Wilson, M. M. J., (2024). Inherent and adaptive resilience of logistics operations in food supply chains. Journal of Business Logistics, 45(1), e12362. https://doi.org/10.1111/jbl.12362.
  • Lu, Q.Jiang, Y., and Wang, Y.(2024). The effects of supply chain governance on supply chain resilience based on information processing theory, Industrial Management & Data Systems, 124 (1), 291-318. https://doi.org/10.1108/imds-01-2023-0007
  • Modares, A., Motahari Farimani, N., Dehghanian, F. (2024). A new vendor-managed inventory four-tier model based on reducing environmental impacts and optimal supplier selection under uncertainty. Journal of Industrial and Management Optimization, 20(1), 188-220. https://doi.org/10.3934/jimo.2023074
  • Ojha, R., Ghadge, A., Tiwari, M. K., & Bititci, U. S. (2018). Bayesian network modelling for supply chain risk propagation. International Journal of Production Research, 56(17), 5795–5819. https://doi.org/10.1080/00207543. 2018 .1467059
  • Nicknezhad, J., & Zegordi, S. H. (2024). Petroleum Supply Chain Dynamic Risk Assessment using Bayesian Network. Computers & Chemical Engineering, 108771.https://doi.org/10.1016/j.compchemeng.2024.108771
  • Liu, X. (2023). Viewpoints on Robust Supply Chain Network Risk Assessment Using Dynamic Bayesian Networks. Deleted Journal, 1–8. https://doi.org/10.58195/iaet.v2i1.135
  • Bugert, N., & Lasch, R. (2023). Analyzing upstream and downstream risk propagation in supply networks by combining Agent-based Modeling and Bayesian networks. Journal of Business Economics, 93(5), 859–889. https://doi.org/10.1007/s11573-022-01128-2
  • Hosseini, S., Ivanov, D. (2020). Bayesian networks for supply chain risk, resilience and ripple effect analysis: A literature review. Expert Systems with Applications, 161, 113649. https://doi.org/10.1016/j.eswa.2020.113649.
  • Sabouhi, F., Pishvaee, M.S., Jabalameli, M.S. (2018). Resilient supply chain design under operational and disruption risks considering quantity discount: A case study of pharmaceutical supply chain. Computers & Industrial Engineering, 126, 657-672. https://doi.org/10.1016/j.cie.2018.10.001.
  • Hosseini, S., Morshedlou, N., Ivanov, D., Sarder, M.D., Barker, K., and Khaledf, A. A. (2019b). Resilient supplier selection and optimal order allocation under disruption risks. International Journal of Production Economics, 213, 124–137. https://doi.org/10.1016/j.ijpe.2019.03.018.
  • Torabi, S.A., Baghersad, M.m., and Mansouri, S.A. (2015). Resilient supplier selection and order allocation under operational and disruption risks. Transportation Research Part E, 79, 22–48. https://doi.org/10.1016/j.tre.2015.03.005.
  • Amer, M., Daim, T. U., and Jetter, A. (2013). A review of scenario planning. Futures, 46, 23-40. https://doi.org/10.1016/j.futures.2012.10.003