ارائه یک مدل برنامه‌ریزی ریاضی جدید برای تخصیص مکان‌های انبارش در سیستم ذخیره و بازیابی اتوماتیک تحت شرایط عدم قطعیت تقاضا و حل آن با یک روش بهینه‌سازی استوار؛ (مطالعه موردی: انبار شرکت ایران‌خودرو)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه مهندسی صنایع، دانشکدۀ مهندسی صنایع، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران

2 دکترای مهندسی صنایع، دانشکدۀ مهندسی صنایع، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران

3 دانشیار گروه مهندسی مکانیک، دانشکدۀ فنی، واحد تهران جنوب، دانشگاه آزاد اسلامی تهران، تهران، ایران

4 استاد گروه مهندسی صنایع، دانشکدۀ مهندسی صنایع، پردیس دانشکده‌های فنی، دانشگاه تهران، تهران، ایران

5 استادیار گروه مهندسی صنایع، دانشکدۀ فنی و مهندسی، واحد رباط کریم، دانشگاه آزاد اسلامی، رباط کریم، ایران

چکیده

در این تحقیق، براساس شرایط و محدودیت‌های انبار اتوماتیک شرکت ایران‌خودرو یک مدل برنامه‌ریزی ریاضی سه‌هدفه غیرخطی پیشنهاد شده که هدف این مدل، تخصیص بهینه پالت‌ها به مکان‌های انبارش ازپیش تعیین شده، با یک شاخص جدید می‌باشد. ازآنجا که تقاضای پالت‌های انبار به‌دلیل نوسان تقاضای مشتریان از عدم قطعیت بالایی برخوردار می‌باشد، به استوار نمودن مدل ریاضی به روش P-Robustness جهت مقابله با تأثیر تغییر تقاضا بر حل بهینه پرداخته شده است و پس از آن مسأله به یک مدل ریاضی تک‌هدفه تبدیل می‌شود که برای حل آن در ابعاد بزرگ از دو الگوریتم فراابتکاری ژنتیک و شبیه‌سازی تبرید استفاده شده است. جهت بررسی عملکرد دو الگوریتم از آزمون تی در نرم‌افزار مینی‌تب به‌منظور مقایسه میانگین مقادیر تابع هدف از 15 بار حل مسائل عددی در ابعاد مختلف بهره گرفته شده است. معرفی یک شاخص جدید برای تخصیص بهتر پالت‌ها به محل‌های ذخیره‌سازی در انبار اتوماتیک ایران‌خودرو موجب کاهش مسافت، زمان، انرژی و هزینه‌های ذخیره و بازیابی و جابجایی شده که با توجه به حجم بالای گردش قطعات در انبار، می‌توان نتیجه گرفت که صرفه‌جویی قابل‌توجهی حاصل شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Presenting a New Mathematical Programming Model for the Storage Locations Assignment in the Automated Storage and Retrieval System Under the Conditions of Demand Uncertainty and Solving it with a Robust Optimization Method; (Case Study: Iran Khodro Warehouse)

نویسندگان [English]

  • Amir Abbas Shojaie 1
  • Keyvan Roshan 2
  • Mehrdad Javadi 3
  • Reza Tavakkoli-Moghaddam 4
  • Mohammad Reza Khalaj 5
1 Associate Professor, Department of Industrial Engineering, Faculty of Industrial Engineering, Tehran South Branch, Islamic Azad University, Tehran, Iran
2 PhD in Industrial Engineering, Faculty of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
3 Associate Professor, Department of Mechanical Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University of Tehran, Tehran, Iran
4 Professor, Department of Industrial Engineering, Faculty of Industrial Engineering, Technical Faculties Campus, University of Tehran, Tehran, Iran
5 Assistant Professor, Department of Industrial Engineering, Faculty of Technology and Engineering, Rabat Karim Branch, Islamic Azad University, Robat Karim, Iran
چکیده [English]

In this research, based on the conditions and limitations of Iran Khodro's automatic warehouse, a non-linear three-objective mathematical programming model is proposed. Since the demand for warehouse pallets has high uncertainty due to the fluctuation of customer demand, the mathematical model has been based on the P-Robustness method to deal with the effect of changing demand on the optimal solution, and then the problem is converted to a single-objective mathematical model. It turns out that two meta-heuristic algorithms e.g., genetic algorithm and simulated annealing algorithm have been used to solve it in large scales. To check the performance of the two algorithms, the T-test in Minitab software was used to compare the average values of the objective function from 15 times solving numerical problems in different dimensions. Introducing a new index for better allocation of pallets to storage locations in Iran Khodro's automatic warehouse has reduced the distance, time, energy, and costs of storage retrieval and handling, which due to the high turnover of parts in the warehouse, can be concluded that significant savings have been achieved

کلیدواژه‌ها [English]

  • Automated Storage and Retrieval System (AS/RS)
  • Class-Based Storage
  • Storage Location Assignment Policy
  • Cube Per Order Index (COI)
  • Uncertainty
  • Robust Optimization
  • آراسته، م. (1389). طراحی و ساخت سیستم بازیابی خودکار. پایان‌نامه کارشناسی ارشد رشته مهندسی مکانیک گرایش ساخت و تولید، دانشکده مهندسی، دانشگاه بیرجند.
  • پایدار، محمد مهدی، سعیدی مهرآباد، محمد. (1393). طراحی یک مدل یکپارچه استوار دو‌هدفه زنجیره‌تأمین و آرایش سلولی مجازی پویا. نشریه پژوهش‌های مهندسی صنایع در سیستم‌های تولید، 2(3)، 33-45.
  • رفیعی، مجید، محمدی طلب، عطیه. (1396). ارائه یک مدل ریاضی با رویکرد بهینه‌سازی استوار برای طراحی سیستم تولید سلولی پویا با درنظرگیری ماشین‌آلات چندکاره. نشریه پژوهش‌های مهندسی صنایع در سیستم‌های تولید، 4(9)، 281-295. doi: 22084/ier.2017.1827
  • فیروزی، ن.؛ (1383). شبیه‌سازی یک سیستم ذخیره‌سازی و بازیابی اتوماتیک (AS/RS). سومین کنفرانس بین‌المللی مهندسی صنایع، دانشگاه صنعتی امیرکبیر.
  • Aktan, H. E. and Tosun, Ö., (2013). An integrated fuzzy AHP – fuzzy TOPSIS approach for AS/RS selection. Int. J. Productivity and Quality Management, Vol. 11, No. 2.
  • Back, T., and Schwefel, H.P. (1996). “Evolutionary Computation: An Overview”, Proc. 3rd IEEE Conference on Evolutionary Computation, 20-29.
  • Ben-Tal, A., & Nemirovski, A. (1998). “Robust Convex Optimization”, Mathematical Operations Research, 23, pp. 769-805.
  • Ben-Tal, A., & Nemirovski, A. (2000). “Robust Solutions of Linear Programming Problems Contaminated with Uncertain Data”, Mathematical Programming. 88, pp. 411-424.
  • Borisoglebskaya, L N., Provotorova, E N., Segeev, S M. And Khudyakov, A P. (2019). Automated storage and retrieval system for Industry 4.0 concept. IOP Conference Series: Material Science and Engineering, 537 032036
  • Bortolini, M., Faccio, M., Ferrari, E., Gamberim, M., and Pilati F. (2017). Time and energy optimal unit-load assignment for automatic S/R warehouses, International Journal of Production Economics, Volume 190, August 2017, Pages 133-145.
  • Boysen, N., & Stephan, K. (2016). A survey on single crane scheduling in automated storage/retrieval systems. European Journal of Operational Research, 1–14.
  • Bozer, Y. A., & Cho, M. (2005) Throughput performance of automated storage/retrieval systems under stochastic demand, IIE Transactions, 37:4, 367-378, DOI: 10.1080/07408170590917002.
  • Chen, L., Langevin, A., & Riopel, D., (2010) The storage location assignment and interleaving problem in an automated storage/retrieval system with shared storage, International Journal of Production Research, 48:4, 991-
  • Davis, L. (1991). “Handbook of Genetic Algorithms”, New York, Van Nostrand Reinhold.
  • Ekren, B. Y., Sari, Z., and Lerher, T. (2015). Warehouse Design under Class-Based Storage Policy of Shuttle-Based Storage and Retrieval System. IFAC-PapersOnLine, 48-3, 1152-1154.
  • El-Ghaoui, L., Oustry, F., Lebret, H. (1998). “Robust solutions to Uncertain Semidefinite Programs”, SIAM J. Optim. 9, pp. 33-52.
  • Fang, H., Yueting, C., and Shouhua, Z. (2008). Application of Fuzzy Control in the Stacker Crane of an AS/RS. Fifth International Conference on Fuzzy Systems and Knowledge Discovery.
  • Feng, A., Di, Z., and Ding, W. (2015). Research on Picking Route Optimization for One Stacker in Multiple Aisles Automated Storage and Retrieval System. Proceedings of China Modern Logistics Engineering, Lecture Notes in Electrical Engineering 286, DOI 10.1007/978-3-662-44674-4_25.
  • Goetschalckx, M., Ratliff, H.D., (1990). Shared storage policies based on the duration stay of unit loads. Management Science 34 (9), 1120–1132.
  • Goldberg, D. E. (1989). Genetic algorithms in search optimization and machine learning, Addision-Wesley, Reading, Mass.
  • Gutiérrez G. J. & Kouvelis, P. (1992). A robust approach to international sourcing. Annals of Operations Research 59,165-193.
  • Gutierrez, G. J., Kouvelis, P., and Kurawala A. A. (1996). A robustness approach to uncapacitated network design problems. European Journal of Operations Research, 94:362–376
  • Hameed, H. M., Al Amry, K. A., & Rashid, A. T. (2019). The Automatic Storage and Retrieval System: An Overview. International Journal of Computer Applications975, 8887.
  • Hariga, M.A., Jackson, P.L., (1996). The warehouse scheduling problem: Formulation and algorithms. IIE Transactions 28 (2), 115–127.
  • Heskett, J.L. (1963). Cube-Per-Order Index – A key to warehouse stock location. Transportation and Distribution Management 3, 27–31.
  • Holland, J. H. (1975). Adaptation in natural and artificial systems, MIT Press, Cambridge, Mass.
  • Hur, S., Lee, Y. H., Lim, S. Y., and Lee, M. H. (2004). A performance estimation model for AS/RS by M/G/1 queuing system. Computers & Industrial Engineering, 46, 233–241.
  • Ignatius M. S., Chen E., Elpek N. M., Fuller A. Z., Tenente I. M., Clagg R., Liu S., Blackburn J. S., Linardic C. M., Rosenberg A. E., et al. (2012). In vivo imaging of tumor-propagating cells, regional tumor heterogeneity, and dynamic cell movements in embryonal rhabdomyosarcoma. Cancer Cell 21, 680–693.
  • Kallina, C., Lynn, J., (1976). Application of the cube-per-order index rule for stock location in a distribution warehouse. Interfaces 7(1), 37–46.
  • Kirkpatrick, S., Gelatt Jr. C. D., and Vecchi, M. P. (1983). "Optimization by Simulated Annealing". Science. 220 (4598): 671–680.
  • Kouvelis, P., Kurawarwala, A. A., and Gutiérrez G. J. (1992). Algorithms for robust single and multiple period layout planning for manufacturing systems. European Journal of Operational Research. Volume 63, Issue 2, Pages 287-303.
  • Kouvelis, P., Yu, G. (1997). “Robust Discrete Optimization and its Applications”, Kluwer Academic Publishers, Norwell, MA.
  • Kulturel, S., Ozdemirel, N. E., Sepil, C., & Bozkurt, Z., (1999) Experimental investigation of shared storage assignment policies in automated storage/retrieval systems, IIE Transactions, 31:8, 739-749, DOI: 10.1080/07408179908969873.
  • Kucera, E., Niznanska, M., Kozak, S. (2015). Advanced Techniques for Modelling of AS/RS Systems in the Automotive Industry Using High-level Petri Nets. 16th International Carpathian Control Conference (ICCC).
  • Laarhoven, P.J., & Aarts, E.H. (1987). Simulated Annealing: Theory and Applications. Springer Netherlands
  • Liu, H. and Xu, Y. (2015). The Online Storage Strategy for Automated Storage and Retrieval System with Single Open in One Dimension. Springer International Publishing Switzerland. FAW 2015, LNCS 9130, pp. 190–197. DOI: 10.1007/978-3-319-19647-3 18.
  • Man, X., Zheng, F., Chu, F., Liu, M., & Xu, Y. (2019). Bi-objective optimization for a two-depot automated storage/retrieval system. Annals of Operations Research, 1-20.
  • Mareeswaran, G. B., Kumar, K., Karthik, A. and Ram G. P. (2019). Plc-Based Automated Storage and Retrieval System with A Robotic End Effector. International Journal of Engineering Trends and Technology (IJETT), Volume 67, Issue 7, p. 11-14.
  • D. & Hachemi K. (2018). Retrieval–travel-time model for free-fall-flow-rack automated storage and retrieval system. Journal of Industrial Engineering International, Volume 14, Issue 4, pp 807–820.
  • Michalewicz, Z. (1992). “Genetic Algorithms + Data structures = Evolutionary Programs”, New York, Springer-Verlag, p. 387.
  • Mostofi, A., & Erfanian, H. (2018). MULTI-SHUTTLE AUTOMATED STORAGE AND RETRIEVAL SYSTEM. Review of Industrial Engineering Letters, Vol. 4, No. 1, pp. 12-20
  • Pan, F., & Nagi, R. (2010). Robust supply chain design under uncertain demand in agile manufacturing. Computers & Operations Research 37, 668 – 683.
  • Pan, J. C., Shih, P., Wu, M., Lin, J. (2015). Storage assignment heuristic method based on genetic algorithm for a pick-and-pass warehousing system. Computers & Industrial Engineering. 81, 1–13.
  • Roodbergen, K. J., & Vis, I. F. (2009). A survey of literature on automated storage and retrieval systems. European Journal of Operational Research, 194, 343–362., 79, 164–177.
  • Roshan, K., Shojaie, A. B. and Javadi, M. (2018). Advanced allocation policy in class-based storage to improve AS/RS efficiency toward green manufacturing. International Journal of Environmental Science and Technology 15(9):1-12. DOI:10.1007/s13762-018-1921-6
  • Singbal, V. & Adil, G. K. (2019) A flexible approach to designing a single crane, multi-aisle automated storage/retrieval system considering storage policies, transport
    equipment and demand skew, International Journal of Computer Integrated Manufacturing, 32:11,
    1053-1066, DOI: 10.1080/0951192X.2019.1686169.
  • Snyder, L. V., & Daskin, M. S. (2005). Stochastic p-Robust Location Problems. IIE Transactions 38(11), 971-985.
  • Soyster, A.L., (1973). “Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming”, Operation Researches 21, pp.1154-1157.
  • Thonemann, U. W. and Brandeau, M. L. (1998). Note. Optimal Storage Assignment Policies for Automated Storage and Retrieval Systems with Stochastic Demands. Management Science 44(1):142-148. http://dx.doi.org/10.1287/mnsc.44.1.142.
  • Tian, B. and Wu, Y. (2019). Warehouse Design Model for Shuttle-Based Storage and Retrieve System. Journal of Physics: Conference Series, 1187
  • Tosun, Ö., and Aktan, H. E. (2016). A multi-criteria decision-making approach to evaluate automated storage and retrieval systems. Int. J. Applied Decision Sciences, Vol. 9, No. 2.
  • Xia, Z., Yaohua, W., Delong, X., and Yunxia C. (2018). Dynamic Modelling of an Automated Vehicle Storage and Retrieval System and a Simulation
    Analysis of its Efficiency. ENGINEERING MODELLING 31, 4, 29-42