برنامه‌ریزی تولید یک سیستم ترکیبی تولید/بازتولید پویا با درنظر گرفتن تصمیمات قیمت‌گذاری و وارانتی در شرایط رقابت بین محصولات نو و بازتولیدی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی‌ارشد مهندسی صنایع، گروه مهندسی صنایع، دانشکدۀ فنی و مهندسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 استادیار گروه مهندسی صنایع، دانشکدۀ فنی و مهندسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

با افزایش آلودگی­‌های زیست‌محیطی در اثر دفع محصولات مستعمل در محیط زیست، بازیابی این‌گونه محصولات در پایان چرخه عمرشان تبدیل به یکی از موضوعات مهم در حوزه لجستیک معکوس و تولید پایدار شده است. بازتولید یکی از گزینه­‌های بازیابی محصولات مستعمل، با مزیت‌های اقتصادی بالا و کمترین اثرات مخرب زیست‌محیطی می­باشد. برنامه­‌ریزی همزمان تولید محصولات نو و بازتولید محصولات مستعمل، یک سیستم ترکیبی تولید/بازتولید را شکل داده که در زمره مسائل پیچیده در حوزه برنامه­ریزی سیستم‌های تولیدی قرار می­‌گیرد که تاکنون در این حوزه، قیمت‌گذاری، وارانتی و همچنین رقابت به‌صورت جدی بررسی نشده است. هدف این پژوهش ایجاد یک برنامه تولید بهینه برای یک سیستم ترکیبی تولید/بازتولید چنددوره‌ای است که در آن تولیدکننده درخصوص قیمت، میزان تولید و مدت زمان وارانتی برای محصولات نو و بازتولیدی به‌صورت همزمان تصمیم می‌گیرد. برای دستیابی به این هدف، یک مدل ریاضی غیرخطی عدد صحیح مختلط (MINLP) چنددوره‌ای ساخته می‌شود. در دوره اول تنها محصول نو تولید و به‌فروش می‌رسد، سپس از دوره‌های بعد محصولات مستعمل (هسته‌ها) در سطوح کیفیتی متفاوت از مشتریان خریداری شده و درنتیجه بازتولید به مدل اضافه می‌گردد. ازآنجا که هر دو نوع محصول در یک بازار به‌فروش می‌رسند، بین آن‌ها در کسب سهم بیشتر بازار رقابت وجود دارد، که این موضوع در مدل لحاظ شده است. باتوجه به پیچیدگی مدل توسعه‌یافته، از الگوریتم‌های بهینه‌سازی ازدحام ذرات و شبیه‌سازی تبرید برای حل آن استفاده می­‌شود. نتایج عددی، کارایی و اثربخشی مدل پیشنهادی و رویکردهای حل را نشان می‌­دهند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Production Planning of a Dynamic Hybrid Manufacturing/Remanufacturing System Considering Pricing and Warranty Decisions Under Competition Between New and Remanufactured Products

نویسندگان [English]

  • Atena Naseri 1
  • Seyyed Ahmad Yazdian 2
1 Assistant Professor, Department of Industrial Engineering, Faculty of Technology and Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Assistant Professor, Department of Industrial Engineering, Faculty of Technology and Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

With the increase in environmental pollution due to the disposal of used products in the environment, recovery of such products at the end of their life cycle has become one of the important issues in the field of reverse logistics and sustainable production. Remanufacturing is one of the options for used products recovery with high economic advantages and the least harmful environmental effects. The simultaneous planning of the production of new products and remanufacturing of used ones forms a combined manufacturing/remanufacturing system, which is among the complex issues in the field of production systems planning. The combined pricing, warranty, and competition considerations has so far not been seriously investigated in this field. The aim of this research is to create an optimal production plan for a multi-period hybrid manufacturing/remanufacturing system, where the producer decides on the price, the amount of production and the warranty period for both new and remanufactuted products. To achieve this goal, a multi-period mixed integer non-linear programming (MINLP) model is built. Only new products are produced and sold in the first period, then the used products (cores), in different quality levels, are purchased from customers in the following periods, and hence, remanufacturing is added to the model. Both types of products are sold in the same market, so there is competition between them to gain more market share. Due to the complexity of the developed model, particle swarm optimization (PSO), and simulated annealing (SA) algorithms are used for its solution. Numerical results show the efficiency and effectiveness of the proposed model and solution approaches.

کلیدواژه‌ها [English]

  • Hybrid manufacturing/Remanufacturing System
  • Pricing
  • Warranty
  • Competition
  • Mixed-Integer Nonlinear Programming
  • Particle Swarm Optimization Algorithm
  • Bulmus, S. C., Zhu, S. X., & Teunter, R. (2014). Competition for cores in remanufacturing. European Journal of Operational Research, 233(1), 105-113. https://doi.org/10.1016/j.ejor.2013.08.025
  • Li, K., Li, Y., Gu, Q., & Ingersoll, A. (2019). Joint effects of remanufacturing channel design and after-sales service pricing: an analytical study. International Journal of Production Research, 57(4), 1066-1081. https://doi.org/10.1080/00207543.2018.1500722
  • Xu, F., Li, Y., & Feng, L. (2019). The influence of big data system for used product management on manufacturing–remanufacturing operations. Journal of Cleaner Production, 209, 794-782. https://doi.org/10.1016/j.jclepro.2018.10.240
  • Bhatia, M. S., & Srivastava, R. K. (2018). Analysis of external barriers to remanufacturing using grey-DEMATEL approach: An Indian perspective. Resources, Conservation and Recycling, 136, 79-87.‏ https://doi.org/10.1016/j.resconrec.2018.03.021
  • Thierry, M., Salomon, M., Van Nunen, J., & Van Wassenhove, L. (1995). Strategic issues in product recovery management. California management review, 37(2), 114-136.‏ https://doi.org/10.2307/41165792
  • Yazdian, S. A., Shahanaghi, K., & Naini, S. G. J. (2017). Integrated marketing and operational decisions in remanufacturing of end-of-life products: model and hybrid solution algorithms. International Journal of Operational Research, 29(1), 34-66. https://doi.org/10.1504/IJOR.2017.083174
  • Peng, P., & Shehabi, A. (2022). Waste Electronics in the United States: Future Trends and Economical Potential. https://doi.org/10.21203/rs.3.rs-1297140/v1
  • Liu, W., Ma, W., Hu, Y., Jin, M., Li, K., Chang, X., & Yu, X. (2019). Production planning for stochastic manufacturing/remanufacturing system with demand substitution using a hybrid ant colony system algorithm. Journal of Cleaner Production, 213, 999-1010. https://doi.org/10.1016/j.jclepro.2018.12.205
  • Lu, Z., & Bostel, N. (2007). A facility location model for logistics systems including reverse flows: the case of remanufacturing activities. Computers & Operations Research, 34(2), 299–323. https://doi.org/10.1016/j.cor.2005.03.002
  • Su, C., & Wang, X. (2016). Optimal Upgrade Policy for Used Products Sold with Two‐dimensional Warranty. Quality and Reliability Engineering International, 32(8), 2889-2899. https://doi.org/10.1002/qre.1973
  • Ahiska, S. S., Gocer, F., & King, R. E. (2017). Heuristic inventory policies for a hybrid manufacturing/remanufacturing system with product substitution. Computers & Industrial Engineering, 114, 206-222. https://doi.org/10.1016/j.cie.2017.10.014
  • Guide Jr, V. D. R., & Van Wassenhove, L. N. (2009). OR FORUM—The evolution of closed-loop supply chain research. Operations Research, 57(1), 10-18. https://doi.org/10.1287/opre.1080.0628
  • Deng, Q. W., Liao, H. L., Xu, B. W., & Liu, X. H. (2017). The resource benefits evaluation model on remanufacturing processes of end-of-life construction machinery under the uncertainty in recycling price. Sustainability, 9(2), 256.  https://doi.org/10.3390/su9020256
  • Ji, X., Li, G., & Wang, Z. (2017). Impact of emission regulation policies on Chinese power firms’ reusable environmental investments and sustainable operations. Energy Policy, 108, 163-177. https://doi.org/10.1016/j.enpol.2017.05.035
  • Guide Jr, V. D. R., Jayaraman, V., & Srivastava, R. (1999). Production planning and control for remanufacturing: a state-of-the-art survey. Robotics and Computer-Integrated Manufacturing, 15(3), 221-230. https://doi.org/10.1016/S0736-5845(99)00020-4
  • Ferrer, G. (1997). The economics of personal computer remanufacturing. Resources, Conservation and Recycling, 21(2), 79-108. https://doi.org/10.1016/S0921-3449(97)00030-X
  • Li, W., Wang, P., Cheng, W., & Nie, K. (2024). Transnational remanufacturing decisions under carbon taxes and tariffs. European Journal of Operational Research, 312(1), 150-163. https://doi.org/10.1016/j.ejor.2023.06.019
  • Sitcharangsie, S., Ijomah, W., & Wong, T. C. (2019). Decision makings in key remanufacturing activities to optimise remanufacturing outcomes: a review. Journal of Cleaner Production, 232, 1465-1481. https://doi.org/10.1016/j.jclepro.2019.05.204
  • Mao, H., Wang, W., Liu, C., Xu, Y., & Zhao, S. (2023). Effects of the carbon emission quota policy on the quality and sales of manufactured and remanufactured products. International Journal of Production Economics, 266, 109058. https://doi.org/10.1016/j.ijpe.2023.109058
  • Lahmar, H., Dahane, M., Mouss, N. K., & Haoues, M. (2022). Production planning optimisation in a sustainable hybrid manufacturing remanufacturing production system. Procedia Computer Science, 200, 1244-1253. https://doi.org/10.1016/j.procs.2022.01.325
  • Guide Jr, V. D. R., Teunter, R. H., & Van Wassenhove, L. N. (2003). Matching demand and supply to maximize profits from remanufacturing. Manufacturing & Service Operations Management, 5(4), 303-316. https://doi.org/10.1287/msom.5.4.303.24883
  • Pokharel, S., & Liang, Y. (2012). A model to evaluate acquisition price and quantity of used products for remanufacturing. International Journal of Production Economics, 138(1), 170-176. https://doi.org/10.1016/j.ijpe.2012.03.019
  • Li, X., Li, Y., & Cai, X. (2015). Remanufacturing and pricing decisions with random yield and random demand. Computers & Operations Research, 54, 195-203. https://doi.org/10.1016/j.cor.2014.01.005
  • Mahmoudzadeh, M., Sadjadi, S. J., & Mansour, S. (2013). Robust optimal dynamic production/pricing policies in a closed-loop system. Applied Mathematical Modelling, 37(16-17), 8141-8161. https://doi.org/10.1016/j.apm.2013.03.008
  • Jena, S. K., & Sarmah, S. P. (2014). Price competition and co-operation in a duopoly closed-loop supply chain. International Journal of Production Economics, 156, 346-360. https://doi.org/10.1016/j.ijpe.2014.06.018
  • Cai, X., Lai, M., Li, X., Li, Y., & Wu, X. (2014). Optimal acquisition and production policy in a hybrid manufacturing/remanufacturing system with core acquisition at different quality levels. European Journal of Operational Research, 233(2), 374-382. https://doi.org/10.1016/j.ejor.2013.07.017
  • Ke, C., & Yan, B. (2020). Trade-in value effects of used products in remanufacturing with considering consumer purchase behavior. Journal of the Operational Research Society, 73(3), 608-633. https://doi.org/10.1080/01605682.2020.1848362
  • Ullah, M., & Sarkar, B. (2020). Recovery-channel selection in a hybrid manufacturing-remanufacturing production model with RFID and product quality. International Journal of Production Economics, 219, 360-374. https://doi.org/10.1016/j.ijpe.2019.07.017
  • Tang, S., Wang, W., & Zhou, G. (2020). Remanufacturing in a competitive market: A closed-loop supply chain in a Stackelberg game framework. Expert Systems with Applications, 161, 113655. https://doi.org/10.1016/j.eswa.2020.113655
  • Polotski, V., Kenné, J. P., & Gharbi, A. (2019). Production control of hybrid manufacturing–remanufacturing systems under demand and return variations. International Journal of Production Research, 57(1), 100-123. https://doi.org/10.1080/00207543.2018.1461272
  • Liao, H., Deng, Q., & Shen, N. (2019). Optimal remanufacture-up-to strategy with uncertainties in acquisition quality, quantity, and market demand. Journal of Cleaner Production, 206, 987-1003. https://doi.org/10.1016/j.jclepro.2018.09.167
  • Dou, G., Guo, H., Zhang, Q., & Li, X. (2019). A two-period carbon tax regulation for manufacturing and remanufacturing production planning. Computers & Industrial Engineering, 128, 502-513. https://doi.org/10.1016/j.cie.2018.12.064
  • Jena, S. K., Sarmah, S. P., & Sarin, S. (2019). Price competition between high and low brand products considering coordination strategy. Computers & Industrial Engineering, 130, 500-511. https://doi.org/10.1016/j.cie.2019.03.008
  • Song, H., & Han, S. (2019). Pricing Strategies for Remanufacturers: Considering Both Consumer Preference and Competition. In 2019 16th International Conference on Service Systems and Service Management (ICSSSM)(pp. 1-8). IEEE. https://doi.org/1109/ICSSSM.2019.8887717
  • Wang, N., He, Q., & Jiang, B. (2019). Hybrid closed-loop supply chains with competition in recycling and product markets. International Journal of Production Economics, 217, 246-258. https://doi.org/10.1016/j.ijpe.2018.01.002
  • Zhou, Y. C., & Sun, X. C. (2019). Robust optimal inventory and acquisition effort decisions in a hybrid manufacturing/remanufacturing system. Journal of Industrial and Production Engineering, 36(5), 335-350. https://doi.org/10.1080/21681015.2019.1650836
  • زارع، ساجد، فخرزاد، محمدباقر، حسینی نسب، حسن و خادمی زارع، حسن. (1401). «برنامه‌ریزی دمونتاژ چندمحصولی و چنددوره‌ای مبتنی‌بر اشتراک‌گذاری قطعات و مجاز بودن دمونتاژ جزئی تحت محدودیت ظرفیت». نشریه پژوهش‌های مهندسی صنایع در سیستم‌های تولید، 10(21): 35-49. doi: 22084/IER.2023.27084.2099

- Zare, S., Fakhrzad, M. B., Hosseini Nasab, H., & Khademi Zare, H. (2023). Capacitated Multi-Period Multi-Product Disassembly Scheduling with Parts Commonality and Partial Disassembly. Journal of Industrial Engineering Research in Production Systems10(21), 35-49. doi:10.22084/ier.2023.27084.2099 (In Persian).

  • Turki, S., Sauvey, C., & Rezg, N. (2018). Modelling and optimization of a manufacturing/remanufacturing system with storage facility under carbon cap and trade policy. Journal of Cleaner Production, 193, 441-458. https://doi.org/10.1016/j.jclepro.2018.05.057
  • Liao, H., Deng, Q., Wang, Y., Guo, S., & Ren, Q. (2018). An environmental benefits and costs assessment model for remanufacturing process under quality uncertainty. Journal of Cleaner Production, 178, 45-58. https://doi.org/10.1016/j.jclepro.2017.12.256
  • Giri, B. C., Mondal, C., & Maiti, T. (2018). Analysing a closed-loop supply chain with selling price, warranty period and green sensitive consumer demand under revenue sharing contract. Journal of Cleaner Production, 190, 822-837. https://doi.org/10.1016/j.jclepro.2018.04.092
  • Ho, J. W., Huang, Y. S., & Hsu, C. L. (2018). Pricing under internal and external competition for remanufacturing firms with green consumers. Journal of Cleaner Production, 202, 150-159. https://doi.org/10.1016/j.jclepro.2018.08.109
  • Liu, Z., Chen, J., & Diallo, C. (2018). Optimal production and pricing strategies for a remanufacturing firm. International Journal of Production Economics, 204, 290-315. https://doi.org/10.1016/j.ijpe.2018.07.015
  • Liao, H., & Deng, Q. (2018). A carbon-constrained EOQ model with uncertain demand for remanufactured products. Journal of Cleaner Production, 199, 334-347. https://doi.org/10.1016/j.jclepro.2018.07.108
  • فاطمی قمی، سیدمحمدتقی و ترکمن، سمیه. (1395). «برنامه‌ریزی تولید چندمرحله‌ای در زنجیره‌تأمین حلقه بسته همراه با راه‌اندازی­های وابسته به توالی و انتقال راه‌اندازی». نشریه پژوهش‌های مهندسی صنایع در سیستم‌های تولید، 4(9): 239-255. doi:22084/IER.2017.9535.1451

- Fatemi Ghomi, S. M. T., Torkaman, S. (2017). Multi-Stage Production Planning with Sequence-Dependent Setups and Setup Carry Over in Closed-Loop Supply Chain. Journal of Industrial Engineering Research in Production Systems4(9), 239-255. doi: 10.22084/ier.2017.9535.1451 (In Persian).

 

  • Wang, Y., Chen, W., & Liu, B. (2017). Manufacturing/remanufacturing decisions for a capital-constrained manufacturer considering carbon emission cap and trade. Journal of Cleaner Production, 140, 1118-1128. https://doi.org/10.1016/j.jclepro.2016.10.058
  • Yazdian, S.A., Shahanaghi, K., & Makui, A. (2016). Joint optimisation of price, warranty and recovery planning in remanufacturing of used products under linear and non-linear demand, return and cost functions. International Journal of Systems Science, 47(5), 1155-1175. https://doi.org/10.1080/00207721.2014.915355
  • Li, K., Liu, J., Fu, H., & Liu, B. (2020). Acquisition and pricing strategies in hybrid manufacturing-remanufacturing systems. Journal of Manufacturing Systems, 57, 217-230. https://doi.org/10.1016/j.jmsy.2020.09.006
  • Alegoz, M., Kaya, O., & Bayindir, Z. P. (2021). A comparison of pure manufacturing and hybrid manufacturing–remanufacturing systems under carbon tax policy. European Journal of Operational Research, 294(1), 161-173. https://doi.org/10.1016/j.ejor.2021.01.018
  • Assid, M., Gharbi, A., & Hajji, A. (2021). Production planning and control of unreliable hybrid manufacturing-remanufacturing systems with quality-based categorization of returns. Journal of Cleaner Production, 312, 127800. https://doi.org/10.1016/j.jclepro.2021.127800
  • Luo, R., Zhou, L., Song, Y., & Fan, T. (2022). Evaluating the impact of carbon tax policy on manufacturing and remanufacturing decisions in a closed-loop supply chain. International Journal of Production Economics, 245, 108408. https://doi.org/10.1016/j.ijpe.2022.108408
  • Sarkar, B., & Bhuniya, S. (2022). A sustainable flexible manufacturing–remanufacturing model with improved service and green investment under variable demand. Expert Systems with Applications, 202, 117154. https://doi.org/10.1016/j.eswa.2022.117154
  • Ngu, H. J., Lee, M. D., & Osman, M. S. B. (2020). Review on current challenges and future opportunities in Malaysia sustainable manufacturing: Remanufacturing industries. Journal of Cleaner Production, 273, 123071. https://doi.org/10.1016/j.jclepro.2020.123071
  • Mejía-Moncayo, C., Kenné, J. P., & Hof, L. A. (2023). On the development of a smart architecture for a sustainable manufacturing-remanufacturing system: a literature review approach. Computers & Industrial Engineering, 180, 109282. https://doi.org/10.1016/j.cie.2023.109282
  • Van Wassenhove, L. N., & Zikopoulos, C. (2010). On the effect of quality overestimation in remanufacturing. International Journal of Production Research, 48(18), 5263-5280. https://doi.org/10.1080/00207540903150585
  • Ahiska, S. S., & Kurtul, E. (2014). Modeling and analysis of a product substitution strategy for a stochastic manufacturing/remanufacturing system. Computers & Industrial Engineering, 72, 1-11. https://doi.org/10.1016/j.cie.2014.02.015
  • Adida, E., & Perakis, G. (2006). A robust optimization approach to dynamic pricing and inventory control with no backorders. Mathematical Programming, 107, 97-129. https://doi.org/10.1007/s10107-005-0681-5
  • Ascher, H., & Feingold, H. (1984). Repairable systems reliability: modeling, inference, misconceptions and their causes (p. 232). New York: M. Dekker.‏
  • Ebeling, C. E. (1997). Reliability and Maintainability Engineering: An Introduction. New York: McGraw-hill.
  • Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. In Proceedings of ICNN'95-International Conference on Neural Networks (Vol. 4, pp. 1942-1948). IEEE. https://doi.org/1109/ICNN.1995.488968
  • Kennedy, J., & Eberhart, R. C. (1997, October). A discrete binary version of the particle swarm algorithm. In 1997 IEEE International conference on systems, man, and cybernetics. Computational cybernetics and simulation (Vol. 5, pp. 4104-4108). IEEE. https://doi.org/1109/ICSMC.1997.637339
  • Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., & Teller, E. (1953). Simulated annealing. Journal of Chemical Physics, 21(161-162), 1087-1092.‏
  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671-680. https://doi.org/10.1126/science.220.4598.671