طراحی زنجیره توزیع و تلقیح واکسن در شرایط پاندمی (مطالعه موردی واکسن کرونا)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد گروه مهندسی صنایع، دانشکدۀ مهندسی صنایع، دانشگاه علم و صنعت ایران، تهران، ایران

2 کارشناسی ارشد بهینه‌سازی سیستم‌ها، گروه مهندسی صنایع، دانشکدۀ مهندسی صنایع، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

پژوهش حاضر یک مدل غیرخطی سه‌هدفه زنجیره توزیع و تلقیح واکسن با درنظر گرفتن مسأله مکان‌یابی-تخصیص، موجودی تحت عدم قطعیت تقاضا با یک سیستم صف شلوغ تحت شرایط پایداری ارائه می‌دهد. هدف حداقل‌سازی میانگین زمان انتظار واکسیناسیون، ‏به حداقل ‌رساندن هزینه‌های سفارش کلی، نگهداری، تأسیس مرکز تلقیح جدید و کاهش اثرات مخرب زیست‌محیطی ناشی از واکسیناسیون و تأسیس مرکز جدید است. با توجه به نوع مدل، از الگوریتم NSGA-II جهت حل استفاده گردید. نتایج تحلیل حساسیت در یک مثال کوچک عددی نشان داد، با افزایش میانگین زمان انتظار، هزینه‌های کل مسأله کاهش می‌یابد. همچنین تحلیل حساسیت مدل در نرخ‌های مختلف عدم قطعیت نشان داد، که افزایش نرخ عدم قطعیت، تعداد افراد نیازمند واکسن در شبکه را افزایش داده و به‌دلیل محدود بودن ظرفیت مراکز و همچنین ثابت بودن دیگر پارامترها، هزینه‌های متحل بر شبکه افزایش می‌یابد. از سوی دیگر بیشتر شدن واکسن‌های سفارش داده شده و آماده توزیع، سبب افزایش میانگین زمان انتظار در مراکز توزیع، زباله‌های ناشی از آن‌ها و میزان انتشار گازهای مخرب زیست‌محیطی می‌گردد. با کاهش ظرفیت مراکز تلقیح به‌دلیل ثابت بودن مقدار سفارش واکسن، تعداد مراکز تلقیح بیشتری ایجاد شده که منجربه افزایش هزینه‌های ناشی از احداث و میزان حمل‌ونقل در شبکه، افزایش اثرات مخرب زیست‌محیطی ناشی از احداث و حمل‌ونقل می‌گردد. این امر موجب کاهش نرخ ورودی به هر مرکز، طول صف و درنهایت میانگین زمان انتظار می‌گردد. درنهایت 15 مثال عددی در ابعاد مختلف طراحی و کارایی الگوریتم پیشنهادی بررسی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Vaccine Distribution and Inoculation Chain Design in Pandemic Conditions (Case Study of Corona Vaccine)

نویسندگان [English]

  • Ahmad Makui 1
  • Mahdiyeh Mahdikhani 2
1 Professor, Department of Industrial Engineering, Faculty of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
2 M. A. in Department of Industrial Engineering, Faculty of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

This research has presented a three-objective nonlinear mathematical programming model for optimizing the vaccine distribution chain in the pharmaceutical industry. With regard to stability issues, this involves considering location allocation, inventory under uncertain demand, and a crowded queue system with regard to stability and minimizing vaccination waiting times, ordering costs, vaccine holding costs, establishing new vaccination centers, and reducing harmful environmental waste caused by vaccinations and establishing new vaccination centers. As this problem is NP-hard, the NSGA_II algorithm was used. In a numerical example, sensitivity analysis showed that increasing the average waiting time decreased the total costs of the problem, while increasing the amount of generated garbage increased the total costs of the network. Moreover, a sensitivity analysis of the model at various levels of uncertainty revealed that with an increase in uncertainty, the network will have more people who need vaccines, which increases the network's costs. Due to the limited capacity of the centers and the fixed parameters of the network, costs increase. In contrast, the increased number of vaccines ordered and ready for distribution results in an increase in the average waiting time in distribution centers and waste. As a result of reducing the capacity of inoculation centers due to the fixed amount of vaccine orders, more centers were built, resulting in an increase in construction costs and increase in greenhouse gases due to the construction of a new center and transportation. Thus, the rate of entry to each center will decrease, as well as the length of the queue, ultimately leading to a decrease in average waiting time. In addition, 15 numerical examples have been examined to demonstrate the efficiency and design of the proposed algorithm.

کلیدواژه‌ها [English]

  • Location-Allocation
  • Inventory
  • Vaccine Supply Chain
  • Distribution Chain Design
  • M/M/m/C queue
  • Queuing Theory
  • Corona
  • T. Alam, S. Ahmed, S. M. Ali, S. Sarker, G. Kabir, and A. Ul-Islam, ‘Challenges to COVID-19 vaccine supply chain: Implications for sustainable development goals’, Int. J. Prod. Econ., vol. 239, p. 108193, Sep. 2021, doi: 10.1016/j.ijpe.2021.108193.
  • Valizadeh et al., ‘Designing an optimization model for the vaccine supply chain during the COVID-19 pandemic’, Expert Syst. Appl., vol. 214, p. 119009, Mar. 2023, doi: 10.1016/j.eswa.2022.119009.
  • باقری نژاد، جعفر و گل محمدی، زهرا. (1395). زنجیره‌تأمین واکسن و راهکارهایی برای بهبود این زنجیره، اولین کنفرانس بین‌المللی کاربرد پژوهش و تحقیق در علوم و مهندسی، تهران،https://civilica.com/doc/584585
  • جادران، فاطمه، و یزدانی، حمیدرضا. (1399). شناسایی مؤلفه‌های سرمایه اجتماعی کلان برای مقابله با پیامدهای ویروس کرونا. فصلنامه انجمن علوم مدیریت ایران، 15(59)، 63-94.
  • Yadav, A., & Iqbal, B. A. (2021). Socio-economic scenario of South Asia: An overview of impacts of COVID-19. South Asian Survey, 28(1), 20-37.‏
  • Pereira, M., & Oliveira, A. M. (2020). Poverty and food insecurity may increase as the threat of COVID-19 spreads. Public health nutrition, 23(17), 3236-3240.‏
  • https://www.who.int/about/governance/constitution
  • دیرنگ، فائزه و جبل‌عاملی، محمد سعید.(1399). ارائه رویکرد استوار طراحی شبکه زنجیره‌تأمین منطقه‌ای واکسن در حالت عدم قطعیت پارامترها (مطالعه موردی). دانشکده فنی مهندسی، دانشگاه علم و صنعت ایران.
  • Christopher, M. (2016). Logistics & supply chain management. Pearson Uk.‏
  • کشانی شیدا. (1401). شناسایی، ارزیابی و الویت‌بندی شاخص‌های مؤثر بر تاب‌آوری زنجیره‌تأمین با استفاده از روش تحلیل سلسله مراتبی (مطالعه موردی: کارخانه صنایع غذایی زرین شاد سپاهان).
  • Scavarda, L. F., De Carvalho, A. B., & Vieira, M. D. S. (2006). A reference matrix for information system in supply chain management. Brazilian Journal of Operations & Production Management, 3(1), 21-48.‏
  • Buhat, C. A. H., Duero, J. C. C., Felix, E. F. O., Rabajante, J. F., & Mamplata, J. B. (2021). Optimal allocation of COVID-19 test kits among accredited testing centers in the Philippines. Journal of healthcare informatics research, 5, 54-69.‏
  • Amorim, P., Günther, H. O., & Almada-Lobo, B. (2012). Multi-objective integrated production and distribution planning of perishable products. International Journal of Production Economics, 138(1), 89-101.‏
  • Park*, Y. B. (2005). An integrated approach for production and distribution planning in supply chain management. International Journal of Production Research, 43(6), 1205-1224.‏
  • Bettampadi, D., Lepkowski, J. M., Sen, A., Power, L. E., & Boulton, M. L. (2021). Vaccination inequality in India, 2002–2013. American Journal of Preventive Medicine, 60(1), S65-S76.‏
  • Lee, S., Golinski, M., & Chowell, G. (2012). Modeling optimal age-specific vaccination strategies against pandemic influenza. Bulletin of mathematical biology, 74(4), 958-980.‏
  • Hovav, S., & Tsadikovich, D. (2015). A network flow model for inventory management and distribution of influenza vaccines through a healthcare supply chain. Operations Research for Health Care, 5, 49-62.‏
  • Jahani, H., Chaleshtori, A. E., Khaksar, S. M. S., Aghaie, A., & Sheu, J. B. (2022). COVID-19 vaccine distribution planning using a congested queuing system—A real case from Australia. Transportation Research Part e: Logistics and Transportation Review, 163, 102749.‏
  • Bani, E. A., Fallahi, A., Varmazyar, M., & Fathi, M. (2022). Designing a sustainable reverse supply chain network for COVID-19 vaccine waste under uncertainty. Computers & Industrial Engineering, 174, 108808.‏
  • Sazvar, Z., Tafakkori, K., Oladzad, N., & Nayeri, S. (2021). A capacity planning approach for sustainable-resilient supply chain network design under uncertainty: A case study of vaccine supply chain. Computers & Industrial Engineering, 159, 107406.‏
  • Zandkarimkhani, S., Mina, H., Biuki, M., & Govindan, K. (2020). A chance constrained fuzzy goal programming approach for perishable pharmaceutical supply chain network design. Annals of Operations Research, 295, 425-452.‏
  • Tavana, M., Govindan, K., Nasr, A. K., Heidary, M. S., & Mina, H. (2021). A mathematical programming approach for equitable COVID-19 vaccine distribution in developing countries. Annals of Operations Research, 1-34.‏
  • Dai, D., Wu, X., & Si, F. (2021). Complexity analysis of cold chain transportation in a vaccine supply chain considering activity inspection and time-delay. Advances in Difference Equations, 2021(1), 1-18.‏
  • Darmawan, A., Wong, H., & Thorstenson, A. (2021). Supply chain network design with coordinated inventory control. Transportation Research Part E: Logistics and Transportation Review, 145, 102168.‏
  • Shamsi Gamchi, N., Torabi, S. A., & Jolai, F. (2021). A novel vehicle routing problem for vaccine distribution using SIR epidemic model. Or Spectrum, 43(1), 155-188.‏
  • Chaleshtori, A. E., Jahani, H., & Aghaie, A. (2020). Bi-objective optimization approach to a multi-layer location–allocation problem with jockeying. Computers & Industrial Engineering, 149, 106740.‏
  • Lim, J., Norman, B. A., & Rajgopal, J. (2022). Redesign of vaccine distribution networks. International Transactions in Operational Research, 29(1), 200-225.‏
  • Yang, Y., Bidkhori, H., & Rajgopal, J. (2021). Optimizing vaccine distribution networks in low and middle-income countries. Omega, 99, 102197.‏
  • Alizadeh, M., Paydar, M. M., Hosseini, S. M., & Makui, A. (2021). Influenza vaccine supply chain network design during the COVID-19 pandemic considering dynamical demand. Scientia Iranica.‏
  • de Carvalho, M. I., Ribeiro, D., & Barbosa-Povoa, A. P. (2019). Design and planning of sustainable vaccine supply chain. Pharmaceutical Supply Chains-Medicines Shortages, 23-55.‏
  • Nasrollahi, M., & Razmi, J. (2021). A mathematical model for designing an integrated pharmaceutical supply chain with maximum expected coverage under uncertainty. Operational Research, 21, 525-552.‏
  • Ng, C. T., Cheng, T. C. E., Tsadikovich, D., Levner, E., Elalouf, A., & Hovav, S. (2018). A multi-criterion approach to optimal vaccination planning: Method and solution. Computers & Industrial Engineering, 126, 637-649.‏
  • Dasaklis, T. K., Rachaniotis, N., & Pappis, C. (2017). Emergency supply chain management for controlling a smallpox outbreak: the case for regional mass vaccination. International Journal of Systems Science: Operations & Logistics, 4(1), 27-40.‏
  • Savadkoohi, E., Mousazadeh, M., & Torabi, S. A. (2018). A possibilistic location-inventory model for multi-period perishable pharmaceutical supply chain network design. Chemical Engineering Research and Design, 138, 490-505.‏
  • Martonosi, S. E., Behzad, B., & Cummings, K. (2021). Pricing the COVID-19 vaccine: A mathematical approach. Omega, 103, 102451.‏
  • Sinha, P., Kumar, S., & Chandra, C. (2023). Strategies for ensuring required service level for COVID-19 herd immunity in Indian vaccine supply chain. European journal of operational research, 304(1), 339-352.‏
  • Niu, B., Li, Q., & Chen, L. (2020). Exclusive vs. competitive retailing: overseas vaccine supplier’s channel selection considering profit and social responsibility objectives. Computers & Industrial Engineering, 144, 106499.‏
  • Robbins, M. J., & Lunday, B. J. (2016). A bilevel formulation of the pediatric vaccine pricing problem. European Journal of Operational Research, 248(2), 634-645.‏
  • Samii, A. B., Pibernik, R., Yadav, P., & Vereecke, A. (2012). Reservation and allocation policies for influenza vaccines. European Journal of Operational Research, 222(3), 495-507.‏
  • Yan, X., & Zaric, G. S. (2017). Influenza vaccine supply chain with vaccination promotion effort and its coordination. IISE Transactions on Healthcare Systems Engineering, 7(1), 53-72.‏
  • کوچک زاده، زهرا، غلامی، سعیده، و رحمانی، دنیا. (1401). ارائه مدل بهینه‌سازی استوار برای طراحی شبکه زنجیره‌تأمین حلقه بسته سبز کالاهای فاسدشدنی. نشریه پژوهش‌های مهندسی صنایع در سیستم‌های تولید، 10(20)، 113-131. doi: 10.22084/ier.2023.26822.2095
  • صادقیان، رامین و اسفندیاری، رضا. (1401). طراحی شبکه زنجیره‌تأمین چندسطحی برمبنای اهداف چندگانه قابلیت اطمینان، هزینه و زمان تحویل با استفاده از روش حل فراابتکاری. نشریه پژوهش‌های مهندسی صنایع در سیستم‌های تولید، 10(20)، 91-111. doi: 10.22084/ier.2023.25839.2072
  • Chaleshtori, A. E., Jahani, H., & Aghaie, A. (2020). Bi-objective optimization approach to a multi-layer location–allocation problem with jockeying. Computers & Industrial Engineering, 149, 106740.‏
  • Gen, M., Altiparmak, F., & Lin, L. (2006). A genetic algorithm for two-stage transportation problem using priority-based encoding. OR spectrum, 28, 337-354.‏
  • Kim, K. W., Gen, M., & Yamazaki, G. (2003). Hybrid genetic algorithm with fuzzy logic for resource-constrained project scheduling. Applied soft computing, 2(3), 174-188.‏
  • Lin, L., Gen, M., & Wang, X. (2009). Integrated multistage logistics network design by using hybrid evolutionary algorithm. Computers & industrial engineering, 56(3), 854-873.‏
  • Gen, M., Lin, L., Yun, Y., & Inoue, H. (2018). Recent advances in hybrid priority-based genetic algorithms for logistics and SCM network design. Computers & Industrial Engineering, 125, 394-412.‏
  • Hamzadayi, A., & Yildiz, G. (2012). A genetic algorithm based approach for simultaneously balancing and sequencing of mixed-model U-lines with parallel workstations and zoning constraints. Computers & industrial engineering, 62(1), 206-215.‏
  • Chitra, C., & Subbaraj, P. (2012). A nondominated sorting genetic algorithm solution for shortest path routing problem in computer networks. Expert systems with applications, 39(1), 1518-1525.
  • Babaeinesami, A., Tohidi, H., Ghasemi, P., Goodarzian, F., & Tirkolaee, E. B. (2022). A closed-loop supply chain configuration considering environmental impacts: a self-adaptive NSGA-II algorithm. Applied Intelligence, 52(12), 13478-13496.‏
  • Ransikarbum, K., & Mason, S. J. (2022). A bi-objective optimisation of post-disaster relief distribution and short-term network restoration using hybrid NSGA-II algorithm. International Journal of Production Research, 60(19), 5769-5793.‏
  • Lin, C. C., Liu, W. Y., Peng, Y. C., & Lee, T. K. (2023). Altruistic production and distribution planning in the multilayer dual-channel supply chain: Using an improved NSGA-II with lion pride algorithm. Computers & Industrial Engineering, 176, 108884.‏
  • Chang, Y. C., Chang, K. H., & Zheng, C. P. (2022). Application of a Non-Dominated Sorting Genetic Algorithm to Solve a Bi-Objective Scheduling Problem Regarding Printed Circuit Boards. Mathematics, 10(13), 2305.