برآورد طول عمر مفید باقیمانده با درنظر گرفتن اثر تنش‌های فرآیندی مختلف بر تخریب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو دکتری رشتۀ مهندسی صنایع - تحقیق در عملیات و مهندسی سیستم، گروه مهندسی صنایع، دانشکدۀ صنایع، دانشگاه آزاد اسلامی واحد تهران جنوب، تهران، ایران

2 استادیار گروه مهندسی صنایع، دانشکدۀ صنایع، دانشگاه آزاد اسلامی واحد تهران جنوب، تهران، ایران

3 دانشیار گروه مهندسی صنایع، دانشکدۀ صنایع، دانشگاه آزاد اسلامی واحد تهران جنوب، تهران، ایران

چکیده

فرآیند پایش سلامت و پیش­بینی صحیح وقوع زمان شکست هنوز مورد توجه بسیاری از محققین قابلیت اطمینان سیستم‌ها است تا به‌دنبال استفاده مؤثرتر از تسهیلات موجود باشند. در تحقیق حاضر سیستمی تک‌مؤلفه­ای با چهار مکانیسم شکست کلی درنظر گرفته شده است که یکی از آن‌ها تخریب بیش از حد، در شرایط عادی عملیاتی و بقیه تسریع در فرآیند تخریب می‌باشند. در این مقاله، تخریب پیوسته با فرآیند گاما و دو عامل اخلال یا تنش گسسته و پیوسته درنظر گرفته شده­اند که سه مکانیسم مختلف شکست را در وضعیت طول عمر شتاب‌یافته ایجاد کرده، همچنین عامل اخلال گسسته از تابع توزیع پواسون و عامل اخلال پیوسته از تابع توزیع نرمال پیروی می‌کنند. این چهار وضعیت در مقاله حاضر بررسی شده و در هریک از آن‌ها، تخمین تابع قابلیت اطمینان و طول عمر مفید باقی مانده (پیش­بینی سلامت) تجهیزات به‌دست می‌آیند تا به توان احتمال وقوع شکست را در این سیستم تک‌مؤلفه­ای کاهش داد. یک رویکرد ترکیبی با استفاده از کنترل فرآیند آماری با روش تبدیل داده‌ها برای پایش عوامل اخلال به‌کار گرفته می‌شود. همچنین نشان داده شد که با معنادار شدن عامل یا عوامل اخلال پارامتر شکل توزیع گاما افزایش یافته، قابلیت اطمینان و طول عمر مفید باقی مانده کاهش می‌یابند و در پایان برای نشان دادن روش پیشنهادی یک مثال ارائه و حل شد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimating Remaining Useful Lifetime Considering Effects of Different Process Stress on Degradation

نویسندگان [English]

  • Amirbahador Amirhosseini 1
  • Hossean Ghazanfari 2
  • Ashkan Hafezolkotob 3
1 PhD Candidate, Department of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
2 Assistant Professor, Department of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
3 Associate Professor, Department of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

The process of health monitoring and correct prognosis of time to failure occurrence is still considered by many researchers of systems reliability to seek more effective use of available facilities. In the present study, a one-component system with four general failure mechanisms has been considered, one of which is excessive degradation under normal operating conditions and the other is accelerating the degradation process. In this paper, continuous degradation of the Gamma process is considered with two discrete and continuous noise factors or stresses, which create three different failure mechanisms in the accelerated lifetime condition. The discrete noise factor follows the Poisson distribution function and the continuous noise factor follows the normal distribution function. These four situations are investigated in the present paper and in each of them, the estimation of the reliability function and the remaining useful lifetime (RUL) or health prognosis of the equipment is obtained in order to reduce the probability of failure in this single-component system. A hybrid approach using statistical process control (SPC) with data transformation method is used to monitor the noise factors. It was also shown that with the significance of the noise factor or factors the scale parameter of the gamma distribution increases and, the reliability and remaining useful lifetime decrease. An example is solved at the end to illustrate the proposed method.

کلیدواژه‌ها [English]

  • Stochastic Modeling
  • Multivariate-Attribute Control Chart (MVACC)
  • Accelerated Degradation Analysis
  • Gamma Process
  • Valdez-Flores and R. M. Feldman, (1989). A survey of preventive maintenance models for stochastically deteriorating single-unit systems, Nav. Res. Logist., 36:419–446, doi.org/10.1002/1520-6750(198908)36:4<419::AID-NAV3220360407>3.0.CO;2-5.
  • Wang, (2002). A survey of maintenance policies of deteriorating systems, Eur. J. Oper. Res., 139: 469–489, doi.org/10.1016/S0377-2217(01)00197-7.
  • van Noortwijk, M. Kok, and R. Cooke, (1997). Optimal Maintenance Decisions for the Sea-Bed Protection of the Eastern-Scheldt Barrier, in Engineering Probabilistic Design and Maintenance for Flood Protection, Springer US, pp. 25–56.
  • Wang, (2007). A two-stage prognosis model in condition based maintenance, Eur. J. Oper. Res., 182:1177–1187, doi.org/10.1016/j.ejor.2006.08.047.
  • Zhan and C. K. Mechefske, (2007). Robust detection of gearbox deterioration using compromised autoregressive modeling and Kolmogorov-Smirnov test statistic-Part I: Compromised autoregressive modeling with the aid of hypothesis tests and simulation analysis, Mech. Syst. Signal Process., 21:1953–1982, doi.org/10.1016/j.ymssp.2006.11.005.
  • Ben-Daya and M. A. Rahim, (2000). Effect of maintenance on the economic design of x̄-control chart, Eur. J. Oper. Res., 120:131–143, doi.org/10.1016/S0377-2217(98)00379-8.
  • Richard Cassady, R. O. Bowden, L. Liew, and E. A. Pohl, (2000). Combining preventive maintenance and statistical process control: a preliminary investigation, IIE Trans. Institute Ind. Eng.,  32:471–478, doi.org/10.1023/A:1007693017671.
  • G. Yeung, C. R. Cassady, and K. Schneider, (2007). Simultaneous optimization of [Xbar] control chart and age-based preventive maintenance policies under an economic objective, IIE Trans., 40:147–159, doi.org/10.1080/07408170701592515.
  • Linderman, K. E. McKone-Sweet, and J. C. Anderson, (2005). An integrated systems approach to process control and maintenance, Eur. J. Oper. Res., 164:324–340, doi.org/10.1016/j.ejor.2003.11.026.
  • Nelson, (1990). Accelerated testing : statistical models, test plans and data analyses. Wiley.
  • Q. Meeker, L. A. Escobar. (1998). Statistical methods for reliability data. Wiley.
  • -G. Chen, Y. Lio, H. K. T. Ng, and T.-R. Tsai, (2017). Statistical modeling for degradation data. Springer.
  • J. Lu and W. O. Meeker, (1993). Using degradation measures to estimate a time-to-failure distribution, Technometrics, 35:161–174, doi.org/10.1080/00401706.1993.10485038.
  • H. Hu, M. Y. Lee, and J. Tang, (2015). Optimum step-stress accelerated degradation test for Wiener degradation process under constraints, Eur. J. Oper. Res., 241:412–421, doi.org/10.1016/j.ejor.2014.09.003.
  • Wang. Sinica and undefined (2008). A pseudo-likelihood estimation method for nonhomogeneous gamma process model with random effects, Statistica Sinica, 18(3):1153-1163, http://www.jstor.org/stable/24308535.
  • S. Ye and N. Chen, (2014). The inverse gaussian process as a degradation model, Technometrics, 56:302–311, doi.org/10.1080/00401706.2013.830074.
  • S. Ye, L. P. Chen, L. C. Tang, and M. Xie, (2014). Accelerated degradation test planning using the inverse gaussian process, IEEE Trans. Reliab., 63:750–763, doi.org/10.1109/TR.2014.2315773.
  • H. Ling, K. L. Tsui, and N. Balakrishnan, (2015). Accelerated degradation analysis for the quality of a system based on the gamma process, IEEE Trans. Reliab., 64:463–472, doi.org/10.1109/TR.2014.2337071.
  • Guan, Y. Tang, and A. Xu, (2016). Objective Bayesian analysis accelerated degradation test based on Wiener process models, Appl. Math. Model., 40:2743–2755, doi.org/10.1016/j.apm.2015.09.076.
  • H. Jiang, B. X. Wang, and F. T. Wu, (2019). Inference for constant-stress accelerated degradation test based on Gamma process, Appl. Math. Model., 67:123–134, doi.org/10.1016/j.apm.2018.10.017.
  • D. Singpurwalla, (1995). Survival in Dynamic Environments, Statistical Science, 10(1):86–103, http://www.jstor.org/stable/2246233.
  • Zhang, X. Lu, Y. Tan, and Y. Wang, (2015). Reliability demonstration methodology for products with Gamma Process by optimal accelerated degradation testing, Reliab. Eng. Syst. Saf., doi.org/10.1016/j.ress.2015.05.011, 142:369–377.
  • [23] Park and W. J. Padgett, (2005). Accelerated degradation models for failure based on geometric Brownian motion and gamma processes, Lifetime Data Anal., 11:511–527, doi.org/10.1007/s10985-005-5237-8.
  • Pan and N. Balakrishnan, (2010). Multiple-steps step-stress accelerated degradation modeling based on wiener and gamma processes,” Commun. Stat. Simul. Comput., 39:1384–1402, doi.org/10.1080/03610918.2010.496060.
  • Wang, (2009). Nonparametric estimation of the shape function in a Gamma process for degradation data, Can. J. Stat., 37:102–118.
  • R. Niavarani, (2014). Multi-Variate-Attribute Quality Control (MVAQC) (Doctoral dissertation, University of Melbourne, Department of Mechanical Engineering).
  • Taleb, (2009). Control charts applications for multivariate attribute processes, Comput. Ind. Eng., 56:399–410, doi.org/10.1016/j.cie.2008.06.015.
  • Lu, X. S. (1998). Control chart for multivariate attribute processes. International Journal of Production Research, 36(12), 3477-3489, org/10.1080/002075498192166.
  • H. Doroudyan and A. Amiri, (2013). Monitoring multivariate-attribute processes based on transformation techniques, Int. J. Adv. Manuf. Technol., 69:2161–2172, doi.org/10.1007/s00170-013-5149-9.
  • H. Doroudyan and A. Amiri, (2014). Monitoring correlated variable and attribute quality characteristics based on NORTA inverse technique, Int. J. Product. Qual. Manag., 14:247–262, doi.org/10.1504/IJPQM.2014.064478.
  • R. Maleki and R. Sahraeian, (2015). Online monitoring and fault diagnosis of multivariate-attribute process mean using neural networks and discriminant analysis technique, Int. J. Eng. Trans. BAppl., 28:1634–1643, doi: 10.5829/idosi.ije.2015.28.11b.11.
  • R. Maleki and A. Amiri, (2015). Simultaneous Monitoring of Multivariate-attribute Process Mean and Variability Using Artificial Neural Networks, J. Qual. Eng. Prod. Optim.,  1:43–54, https://jqepo.shahed.ac.ir/article_188_db89132e09a36c98cd375afffd946530.pdf.
  • Ahsan, M. Mashuri, H. Kuswanto, D. D. Prastyo, and H. Khusna, (2018). Multivariate control chart based on PCA mix for variable and attribute quality characteristics, Prod. Manuf. Res., 6:364–384, doi.org/10.1080/21693277.2018.1517055.
  • Aparisi and L. Lee Ho, (2018). M-ATTRIVAR: An attribute-variable chart to monitor multivariate process means, Qual. Reliab. Eng. Int., 34:214–228, doi.org/10.1002/qre.2250.
  • Balakrishnan and D. Han, (2008). Exact inference for a simple step-stress model with competing risks for failure from exponential distribution under Type-II censoring, J. Stat. Plan. Inference, 138,:4172–4186, doi.org/10.1016/j.jspi.2008.03.036.
  • Banerjee and D. Kundu, (2008). Inference based on type-II hybrid censored data from a Weibull distribution, IEEE Trans. Reliab., 57:369–378, doi.org/ 10.1109/TR.2008.916890.
  • F. Castet and J. H. Saleh, (2009). Satellite and satellite subsystems reliability: Statistical data analysis and modeling,” Reliab. Eng. Syst. Saf., 94:1718–1728, doi.org/10.1016/j.ress.2009.05.004.
  • -H. Chen, X. Tong, and J. Sun, (2009). A frailty model approach for regression analysis of multivariate current status data, Stat. Med., 28:3424–3436, doi.org/10.1002/sim.3715.
  • Lu, C. J., Meeker, W. Q., & Escobar, L. A. (1996). A comparison of degradation and failure-time analysis methods for estimating a time-to-failure distribution. Statistica Sinica, 6(3):531-546, http://www.jstor.org/stable/24305606.
  • Deloux, B. Castanier, and C. Bérenguer, (2009). Predictive maintenance policy for a gradually deteriorating system subject to stress,” Reliab. Eng. Syst. Saf., 94(2):418–431, doi.org/10.1016/j.ress.2008.04.002.
  • Escobar, L. A., & Meeker, W. Q. (2006). A review of accelerated test models. Statistical science, 21(4):552-577, http://www.jstor.org/stable/27645794.
  • Q. Meeker, L. A. Escobar, and C. J. Lu, (1998). Accelerated Degradation Tests: Modeling and Analysis, Technometrics, 40:89–99, doi.org/10.1080/00401706.1998.10485191.
  • -Y. Peng and S.-T. Tseng, (2010). Progressive-stress accelerated degradation test for highly-reliable products, IEEE Trans. Reliab., 59:30–37, doi.org/ 10.1109/TR.2010.2040769.
  • Lawless and M. Crowder, (2004). Covariates and random effects in a gamma process model with application to degradation and failure, Lifetime Data Anal., 10:213–227, doi.org/10.1023/B:LIDA.0000036389.14073.dd.
  • Pan and N. Balakrishnan, (2011). Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes, Reliab. Eng. Syst. Saf., 96:949–957, doi.org/10.1016/j.ress.2011.03.014.
  • Chaluvadi, V. N. H. (2008). Accelerated life testing of electronic revenue meters (Doctoral dissertation, Clemson University).

M. C. Shaw, (2001). Engineering Statistics Handbook, Eng. Probl. Solving, https://www.itl.nist.gov/div898/handbook/eda/eda.htm.