طراحی شبکه زنجیره تامین حلقه بسته با در نظر گرفتن مراکز چند بخشی در شرایط عدم قطعیت با رویکردهای احتمالی و استوار

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه پیام نور

2 دانشگاه پیام نور تهران - گروه مهندسی صنایع

10.22084/ier.2020.19919.1886

چکیده

در این پژوهش مدل‌سازی یک شبکه لجستیک یکپارچه مستقیم و معکوس (حلقه بسته) چند سطحی، چندهدفه، چندمحصولی، چند دوره‌ای به همراه ظرفیت‌های محدود شده و نبود قطعیت در تقاضا، هزینه و بازگشت مدنظر قرار می‌گیرد. در این مقاله یک مدل طراحی شبکه زنجیره‌تأمین حلقه بسته با در نظر گرفتن مراکز جمع‌آوری چندبخشی و مراکز انبار و بازرسی چندبخشی در نظر گرفته می‌شود. چندبخشی بودن مراکز در این مطالعه بدین معناست که هر یک از این مراکز با توجه به طول عمر خدمت محصول طبقه‌بندی‌شده‌اند و محصول با عمر خدمت کمتر و به نسبت سالم‌تر در طبقات بالاتر قرار می‌گیرد و با توجه به ویژگی آن محصول و پس از اعمال عملیات موردنیاز به مراکز بعدی منتقل می‌شوند. مسئله پیشنهادی ابتدا با در نظر داشتن پارامترهایی مثل تقاضا، هزینه و بازگشت احتمالی با این رویکرد و با استفاده از توزیع نرمال مدلسازی می‌شود و ازآنجایی‌که رویکرد احتمالی در شرایط مسئله با ابعاد بزرگ کارایی و اثربخشی خود را از دست می‌دهد در کنار این رویکرد بهینه‌سازی استوار‌ نیز به کار برده می‌‌شود و برای این منظور ابتدا مدل برنامه‌ریزی غیرخطی عدد صحیح مختلط و سپس همتای استوار آن ارائه می‌شود. اهداف در این مطالعه شامل حداقل کردن هزینه‌ها و افزایش کیفیت محصولات بازیافتی ا‌ست. در پایان در این تحقیق مسئله با دو الگوریتم فراابتکاری چندهدفه اعم از الگوریتم ژنتیک چندهدفه با مرتب‌سازی نامغلوب (NSGA II) و الگوریتم بهینه‌سازی ازدحام ذرات (MOPSO) حل شده و نتایج حاصل از آن‌ها مورد مقایسه قرار می‌گیرند.

کلیدواژه‌ها


عنوان مقاله [English]

Design of closed-loop supply chain network with considering of multi-part centers under uncertainty with two robust and stochastic approaches

نویسندگان [English]

  • Zahra Karami 1
  • Ramin Sadeghian 2
1 Payame Noor University
2 Payame Noor University
چکیده [English]

An appropriate supply chain is consisting of foreign suppliers, facilities of productions, distribution centers, sales, demands and transportation. A system may be used for both reducing costs in supply chain and helping to respond customers' demands quickly. In the present study, designing a closed-loop supply chain as strategic decision considered, and as integrate designing of direct-reverse logistic system cause to prevent sub-optimization resulted by designing separated to systems, and closed-loop model used. The studied system in the research was modelling an integrated direct and reverse logistic system as multi surfaces, multi-objective, multi-production and multi-stages optimization through limited capacities and lack of assuring in demands, costs and return. So, in order to oppose lack of assuring, two stable and potential optimization strategies considered. Firstly, regarding to parameters such as demands, costs and potential return and using normal distribution, modelling suggested, and as potential strategy may loss efficiency in large sizes, stable optimization proposed to use, therefore, mix integer nonlinear programming model used, then its stable equivalent considered. The aim of present study is to minimize costs and increase quality of recyclable productions. Finally, two multi-objectives metaheuristic and genetic algorithms solved the problems through non-dominated sorting and particle swarm optimization algorithms, then the results compared. According to the obtained results, NSGA II is more suitable than MOPSO.

کلیدواژه‌ها [English]

  • Closed-Loop Supply Chain
  • robust and Stochastic approaches
  • Uncertainty
  • Multi-part centers
]1[ فلاح، حامد.، اسکندری، حمیدرضا، ذگردی، سید حسام­الدین و چهارسوقی، سید کمال (1396). "ارایه مدل دو سطحی طراحی شبکه زنجیره­تامین حلقه بسته در شرایط عدم قطعیت و رقابت بین زنجیره ای: حل با رویکرد تجزیه بندرز"، مجله مدلسازی در مهندسی، سال پانزدهم، شماره 49: 215-201.

]2[ فضلی خلف، محمدرضا، چهارسوقی، سید کمال و پیشوایی، میرسامان. (1393). "طراحی پایای شبکه زنجیرهتامین حلقه بسته تحت عدم قطعیت: مطالعه موردی یک تولید کننده باتری اسیدی"، مجله مدل سازی در مهندسی، سال دوازدهم، شماره 39: 60-45.

[3] Gutierrez, G. J., Kouvelis, P. and Kurawala, Abbas A. (1996). “A robustness approach to uncapacitated network design”, European Journal of Operational Research, Vol. 94: 362-376.

]4[ بشیری، مهدی و شیری، مهدیه. (1394). "طراحی شبکه زنجیره­تامین حلقه بسته با در نظر گرفتن مراکز جمع اوری چندبخشی در شرایط عدم قطعیت و حل ان با دو الگوریتم ابتکاری و فراابتکاری"، نشریه پژوهشهای مهندسی صنایع در سیستمهای تولید، سال سوم، شماره پنجم: 27-41.        

[5] Acosta, FL. Jr., Quinones Hinojosa, A., Schmidt, M.H. and Weinstein, P. R. (2003). “Diagnosis and management of sacral Tarlov cysts Case report and review of the literature”, Neurosurg, Focus, Vol. 15(2): E15.

[6] Keyvanshokooh, E., Ryan, S. M. and Kabir, E. (2015). “Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated benders decomposition”, European Journal of operational research, Vol. 249: 76-92.

[7] Yoshida, O. and Nishi, T., (2015). “Optimization of Multi-period Bilevel Supply Chains under Demand Uncertainty”, MANUFACTURING SYSTEMS, Vol. 41: 508-513.

]8[ مکرونی، ندا. (1394). رویکرد بهینه سازی استوار برای طراحی شبکه زنجیره­تامین مدار بسته تحت عدم قطعیت، پایان نامه کارشناسی ارشد مهندسی صنایع، دانشگاه گیلان، دانشکده مهندسی صنایع.

[9] Jeihoonian, M., Kazemi Zanjani, M. and Gendreau, M. (2015). “Accelering benders decomposition for closed-loop supply chain network design: case of used durable products with different quality levels”, European Journal of operational research, Vol. 251: 830-845.

[10] Kadzinski, M., Tervonen, T., Tomczyk, M. K. and Dekker, R. (2016). “Evaluation of multi-objective optimization approaches for solving green supply chain design problems”, The International Journal of Management science, Vol. 68: 168-184.

[11] Dinesh Kumar Kadambala, Nachiappan Subramanian, Manoj Kumar Tiwari Muhammad Abdulrahman, (2016). “Closed-loop supply chain network: designs for energy and time value efficiency”, International Journal of production economics, Vol. 183: 382-393.

[12] Hassanpour, A., Bagherinejad, J. and Bashiri, M. (2019). “A robust leader-follower approach for closed loop supply chain network design considering returns quality levels”, Computers & Industrial Engineering, Vol. 136: 293-304.

[13] Shoja, A. Molla-Alizadeh-Zavardehi, S. and Niroomand, S. (2019). “Adaptive meta-heuristic algorithms for flexible supply chain network design problem with different delivery modes”, Computers & Industrial Engineering, Vol. 138, Article 106107.

[14] Vahdani, B. and Ahmadzadeh, E. (2019). “Designing a realistic ICT closed loop supply chain network with integrated decisions under uncertain demand and lead time”, Knowledge-Based Systems, Vol. 179: 34-54.

[15] Avakh Darestani, S. and Hemmati, M. (2019). “Robust optimization of a bi-objective closed-loop supply chain network for perishable goods considering queue system”, Computers & Industrial Engineering, Vol. 136: 277-292.

[16] Hui Peng Master, Neng Shen, Haolan Liao, Heqiang Xue and Qunwei Wang, (2020). “Uncertainty factors, methods, and solutions of closed-loop supply chain — A review for current situation and future prospects”, Journal of Cleaner Production, Vol. 254, Article 120032.

]17[ شفیعی نیک آبادی، محسن و عظیمی، سیدعلی، (1394). "پیش­بینی تقاضا در زنجیره­تامین با استفاده از الگوریتم­های یادگیری ماشین(مورد مطالعه: زنجیره­تامین شرکت ایران خودرو)"، مجله مدلسازی در مهندسی، سال سیزدهم، شماره 41: 136-127.

[18] Ben-Tal, A. and Nemirovski, A., (2000). “Robust solutions of Linear Programming problems contaminated with uncertain data”, Math. Program, Vol. 88: 411-424.

[19] Pishvaee, M. S. and Torabi, S. A. (2010). “A possibilistic programming approach for closed-loop supply chain network design under uncertainty”, Department of Industrial Engineering, Vol. 161: 2668-2683.

[20] Vahdani, B., Iranmanesh, S. H., Mousavi, S. M. and Abdollahzade, M., (2012). “A locally linear neuro-fuzzy model for supplier selection in cosmetics industry A locally linear neuro-fuzzy model for supplier selection in cosmetics industry”, HYPERLINK "http://www.sciencedirect.com/science/journal/0307904X" o "Go to Applied Mathematical Modelling on ScienceDirect" Applied Mathematical Modelling, Vol. 36: 4714–4727. 

]21[  قسمتی، رضا، غضنفری، مهدی و پیشوایی، میرسامان، (1395). "ﻳﻚ ﻣﺪل ﺑﺮﻧﺎﻣﻪرﻳﺰی ﻓﺎزی- اﺣﺘﻤﺎﻟﻲ اﺳﺘﻮار ﺑﺮای ﻃﺮاﺣﻲ ﭘﺎﻳﺎی ﺷﺒﻜﺔ زﻧﺠﻴﺮة ﺗﺄﻣﻴﻦ،  نشریه ﺗﺨﺼﺼﻲ ﻣﻬﻨﺪﺳﻲ ﺻﻨﺎﻳﻊ، 50: 53-68.