طراحی یک شبکه زنجیره تأمین سبز چند هدفه چند محصولی و چند دوره ای با در نظر گرفتن تخفیف در شرایط عدم قطعیت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی صنایع، دانشگاه خوارزمی

2 دانشکده مهندسی صنایع، دانشگاه تهران

چکیده

در جهان امروز، تغییرات در عرصه اقتصاد و صنعت با سرعت بیشتری نسبت به گذشته در حال وقوع می‌باشد. هدف سازمان‌ها و شرکت‌ها، حفظ و افزایش سود و همچنین بقا و دوام بیشتر در بازار است؛ به‌طوری‌که جهانی‌شدن فعالیت‌های اقتصادی در کنار رشد سریع فناوری و منابع محدود، شرکت‌ها را در یک رقابت تنگاتنگ قرار داده است. ازجمله مزیت‌های رقابتی برای شرکت‌ها، کاراتر و اثربخش‌تر کردن فعالیت‌هایی نظیر زنجیره تأمین است. همچنین به دلیل قوانین دولتی، مسائل زیست­محیطی و گسترش مفهوم مسئولیت­پذیری اجتماعی، مدیریت زنجیره تأمین حلقه بسته موردتوجه بسیاری از محققان قرارگرفته است. زنجیره تأمین حلقه بسته شامل هر دو شبکه زنجیره تأمین روبه­جلو و معکوس می­باشد و هدف از طراحی آن ترکیب کردن ملاحظات محیطی با طراحی شبکه زنجیره تأمین سنتی از طریق جمع­آوری محصولات استفاده‌شده و فعالیت­های مربوط به استفاده مجدد از آن­ها می­باشد. در این مقاله یک مدل زنجیره تأمین حلقه بسته دو هدفه، چند دوره‌ای، چند محصولی با در نظر گرفتن ملاحظات زیست‌محیطی و اعمال مفاهیم کمبود قابل جبران و تخفیف، گسترش داده‌شده است. ابتدا مدل قطعی زنجیره تأمین حلقه بسته با استفاده از سه روش تصمیم‌گیری چندهدفه حل و نتایج محاسباتی نشان داده‌شده است. سپس با توجه به غیرقطعی بودن برخی پارامترها، مدل بهینه‌سازی استوار متناظر با مدل پیشنهادی ارائه و با روش‌های تصمیم‌گیری چندهدفه حل‌شده است. درنهایت بهترین روش موجود برای مدل‌های قطعی و غیرقطعی با استفاده از روش حل ایده آل جابجا شونده (فیلترینگ) برگزیده‌شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Design of multi-objective multi-product multi period green supply chain network with considering discount under uncertainty

نویسندگان [English]

  • Javid Ghahremani nahr 1
  • Ali Ghodratnama 1
  • Hamid Reza IzadBakhah 1
  • Reza Tavakkoli Moghaddam 2
1 Department of Industrial Engineering, Kharazmi University
2 Department of Industrial Engineering, University of Tehran
چکیده [English]

In today’s world, changes in the economy and industry field occur in higher speed compared to the past time. The main aim of organizations and companies is to preserve and increase the benefit as well as survive in the commercial fields. This matter has caused in large scale because of that companies the globalization, economic activity along with the rapid Increment of the technical and restricted sources to compete closely together. For the companies, the competitive benefits, for example as to become efficient related to the affairs such as supply chain. Additionally, because of governmental rules, green affairs and development the social responsibility concept, management the closed loop supply chain field has attained many research interests. Closed loop Supply chain involve forward and reverse both together and the main aim of it’s design is to mix up the environmental observations with the traditional supply chain using accumulating the used products and operations related to the them as well. In this paper a multi objective, multi period multi product closed loop supply chain mathematical model considering green matters and compensable shortage as well as discounts has been developed. Firstly, closed loop supply chain mathematical model has been solved using three multi objective decision maker methods and numerical results have been reported in large scale. Secondly, regarding to the uncertainty of the parameters, the robust optimization model related to the main model has been formed and solved using multi objective decision maker methods, finally the best method for deterministic and uncertain model using filtering has been chosen.

کلیدواژه‌ها [English]

  • Green closed loop supply chain
  • MODM
  • Robust optimization
  • Uncertainty
[1]     Stevens, G.C., (1989). “Integrating the supply chain. International Journal of Physical Distribution & Materials Management”, 19(8): 3-8.
[2]     Guide, J.r., Van-Wassenhove, L.N., (2009). “OR FORUM-the evolution of closed-loop supply chain research”, Operations research, 57(1): 10-18.
[3]     Souza, G.C., (2013). “Closed‐Loop Supply Chains: A Critical Review, and Future Research”, Decision Sciences, 44(1): 7-38.
[4]     Fleischmann, M., Bloemhof-Ruwaard, J.M., Dekker, R., Laan, E., Nunen J.A.E.E.,  Wassenhove, L.N., (1997). “Quantitative models for reverse logistics: A review”, European journal of operational research, 103(1): 1-17.
[5]     Govindan, K., Soleimani, H., Kannan, D., (2015). “Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future”, European Journal of Operational Research, 240(3): 603-626.
[6]     Schultmann, F., Engels, B., Rentz, O., (2003). “Closed-loop supply chains for spent batteries”, Interfaces, 33(6): 57-71.
[7]     Inderfurth, K., (2005). “Impact of uncertainties on recovery behavior in a remanufacturing environment: a numerical analysis”, International Journal of Physical Distribution & Logistics Management, 35(5): 318-336.
[8]     Sheu, J.B., Chou, Y.H., Hu, C.C., (2005). “An integrated logistics operational model for green-supply chain management”, Transportation Research Part E: Logistics and Transportation Review, 41(4): 287-313.
[9]     Ko, H.J., Evans, G.W., (2007). “A genetic algorithm-based heuristic for the dynamic integrated forward/reverse logistics network for 3PLs”, Computers & Operations Research, 34(2): 346-366.
[10] Listeş, O., (2007). “A generic stochastic model for supply-and-return network design”, Computers & Operations Research, 34(2): 417-442.
[11] Üster, H., et al., (2007). “Benders decomposition with alternative multiple cuts for a multi‐product closed‐loop supply chain network design model”, Naval Research Logistics (NRL), 54(8): 890-907.
[12] Chouinard, M., D’Amours, S., Aït-Kadi, D., (2008). “A stochastic programming approach for designing supply loops”, International Journal of Production Economics, 113(2): 657-677.
[13] Du, F., Evans, G.W., (2008). “A bi-objective reverse logistics network analysis for post-sale service”, Computers & Operations Research, 35(8): 2617-2634.
[14] Lee, J.E., Gen, M., Rhee,  K.G., (2009). “Network model and optimization of reverse logistics by hybrid genetic algorithm”, Computers & Industrial Engineering, 56(3): 951-964.
[15] Pishvaee, M.S., Jolai, F., Razmi, J., (2009). “A stochastic optimization model for integrated forward/reverse logistics network design”, Journal of Manufacturing Systems, 28(4): 107-114.
[16] Qin, Z., Ji, X., (2010). “Logistics network design for product recovery in fuzzy environment”, European Journal of Operational Research, 202(2): 479-490.
[17] Kara, S.S., S. Onut, (2010). “A two-stage stochastic and robust programming approach to strategic planning of a reverse supply network”, The case of paper recycling. Expert Systems with Applications, 37(9): 6129-6137.
[18] Pishvaee, M.S., Farahani, R.Z., Dullaert, W., (2010). “A memetic algorithm for bi-objective integrated forward/reverse logistics network design”, Computers & operations research, 37(6): 1100-1112.
[19] Pishvaee, M.S., Rabbani, M., S.A. Torabi, (2011). “A robust optimization approach to closed-loop supply chain network design under uncertainty”, Applied Mathematical Modelling, 35(2): 637-649.
[20] Piplani, R., A. Saraswat, (2012). “Robust optimisation approach to the design of service networks for reverse logistics”, International Journal of Production Research, 50(5): 1424-1437.
[21] Mahmoudi, H., H. Fazlollahtabar, I. Mahdavi, (2013). “Mathematical Modeling for Minimizing Costs in a Multilayer Multi-Product Reverse Supply Chain”, Industrial Engineering & Management, 2: 1-6.
[22] Amin, S.H. and Zhang, G., (2013). “A multi-objective facility location model for closed-loop supply chain network under uncertain demand and return”, Applied Mathematical Modelling, 37(6): p. 4165-4176.
[23] Ramezani, M., M. Bashiri, R. Tavakkoli-Moghaddam, (2013). “A new multi-objective stochastic model for a forward/reverse logistic network design with responsiveness and quality level”, Applied Mathematical Modelling, 37(1): 328-344.
[24] Özceylan, E., Paksoy, T., Bektaş, T., (2014). “Modeling and optimizing the integrated problem of closed-loop supply chain network design and disassembly line balancing”, Transportation Research Part E: Logistics and Transportation Review, 61: 142-164.
[25] Soleimani, H., Seyyed-Esfahani, M., Kannan, G., (2014). “Incorporating risk measures in closed-loop supply chain network design”, International Journal of Production Research, 52(6): 1843-1867.
[26] Rezaee, A., Dehghanian, F., Fahimnia, B., Beamon, B., (2015). “Green supply chain network design with stochastic demand and carbon price”, Annals of Operations Research,  250(2): 463-485.
[27] Ben-Tal, A., Nemirovski, A., (1998). “Robust convex optimization. Mathematics of Operations Research, 23(4): 769-805.
[28] Ben-Tal, A., Nemirovski A., (2000). “Robust solutions of linear programming problems contaminated with uncertain data”, Mathematical programming, 88(3): 411-424.
[29] Vahdani, B., Tavakkoli-Moghaddam R., Modarres, M., A. Baboli, (2012). “Reliable design of a forward/reverse logistics network under uncertainty: a robust-M/M/c queuing model”, Transportation Research Part E: Logistics and Transportation Review, 48(6): 1152-1168.
[30] Hwang, C.L., Masud, A.S.M., (1979). “Multiple objective decision making-methods and applications”, Springer.
[31] Torabi, S.A., Hassini, E., (2008). “An interactive possibilistic programming approach for multiple objective supply chain master planning”, Fuzzy Sets and Systems, 159(2): 193-214.