[1] Pinedo, M., (2015). Scheduling. Springer.
[2] Agnetis, A., Billaut, J.C., Gawiejnowicz, S., Pacciarelli, D., Souhal, A., (2014). “Multi-agent scheduling”. Berlin Heidelberg: Springer Berlin Heidelberg. doi, 10(1007): 978-3.
[3] Wu, W.H., Yin, Y., Wu, W.H., Wu, C.C., Hsu, P.H. (2014). “A time-dependent scheduling problem to minimize the sum of the total weighted tardiness among two agents”, Journal of Industrial and Management Optimization, 10(2): 591-611.
[4] Shabtay, D., Gaspar, N., Kaspi, M. (2013). “A survey on offline scheduling with rejection”, Journal of Scheduling, 16(1): 3-28.
[5] Baker, K.R., Smith, J.C., (2003). “A multiple-criterion model for machine scheduling”, Journal of Scheduling, 6(1): 7-16.
[6] Agnetis, A., Mirchandani, P.B., Pacciarelli, D., Pacifici, A. (2004). “Scheduling problems with two competing agents”, Operations Research, 52(2): 229-242.
[7] Fan, B.Q., Cheng, T.C.E. (2016). “Two-agent scheduling in a flowshop”, European Journal of Operational Research, 252(2): 376-384.
[8] Choi, J.Y. (2015). “Minimizing total weighted completion time under makespan constraint for two-agent scheduling with job-dependent aging effects”, Computers & Industrial Engineering, 83: 237-243.
[9] Cheng, S.R., (2014). “Some new problems on two-agent scheduling to minimize the earliness costs”, International Journal of Production Economics, 156: 24-30.
[10] Lei, D. (2015). “Variable neighborhood search for two-agent flow shop scheduling problem”, Computers & Industrial Engineering, 80: 125-131.
[11] Lee, W.C., Chen, S.K., Chen, C.W., Wu, C.C. (2011). “A two-machine flowshop problem with two agents”, Computers & Operations Research, 38(1): 98-104.
[12] Shiau, Y.R., Lee, W.C., Kung, Y.S., Wang, J.Y. (2016). “A lower bound for minimizing the total completion time of a three-agent scheduling problem”, Information Sciences, 340: 305-320.
[13] Kunnathur, A.S., Gupta, S.K. (1990). “Minimizing the makespan with late start penalties added to processing times in a single facility scheduling problem”, European Journal of Operational Research, 47(1): 56-64.
[14] Cheng, T.C.E., Lee, W.C., Wu, C.C. (2010). “Single-machine scheduling with deteriorating functions for jobs procedding times”, Applied Mathematical Modeling, 34(12): 4171-4178.
[15] Yin, Y., Cheng, T.C.E., Wan, L., Wu, C.C., Liu, J. (2015). “Two-agent single-machine scheduling with deteriorating jobs”, Computers and Industrial Engineering, 81: 177-185.
[16] Lee, W.C., Wang, W.J., Shiau, Y.R. Wu, C.C. (2010). “A single machine scheduling problem with two agent and deteriorating jobs”, Applied Mathematical Modeling, 34(10): 3098-3107.
[17] Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J., Stougie, L. (2000). “Multiprocessor scheduling with rejection”, SIAM Journal on Discrete Mathematics, 13(1): 64-78.
[18] Feng, Q., Fan, B., Li, S., Shang, W., (2015). “Two-agent scheduling with rejection on a single machine”, Applied Mathematical Modelling, 39(3): 1183-1193.
[19] Li, S., Yuan, J., (2010). “Parallel-machine scheduling with deteriorating jobs and rejection”, Theoretical Computer Science, 411(40): 3642-3650.
[20] Wu, C.C., Lee, W.C., (2008). “Single-machine group-scheduling problems with deteriorating setup times and job-processing times”, International Journal of Production Economics, 115(1): 128-133.
[21] Chen, D.S., Batson, R.G., Dang, Y., (2010). “Applied integer programming: modeling and solution”,1st edition, John Wiley & Sons.
[22] Sadjadi, S.J., Heidari, M., Esboei, A.A., (2014). “Augmented ε-constraint method in multi objective staff scheduling problem: a case study”, The International Journal of Advanced Manufacturing Technology, 70(5-8): 1505-1514.
[23] Ciro, G.C., Dugardin, F., Yalaoui, F., Kelly, R., (2016). “A NSGA-II and NSGA-III comparison for solving an open shop scheduling problem with resource constraints”, IFAC-Papers Online, 49(12): 1272-1277.
[24] Asefi, H., Jolai, F., Rabiee, M., Araghi, M.T., (2014). “A hybrid NSGA-II and VNS for solving a bi-objective no-wait flexible flowshop scheduling problem”, The International Journal of Advanced Manufacturing Technology, 75(5-8): 1017-1033.
[25] Zitzler, E., Deb, K., Thiele, L. (2000). “Comparison of multiobjective evolutionary algorithms: Empirical results”, Evolutionary computation, 8(2): 173-195.
[26] Zitzler, E., Deb, K., Thiele, L. (2000). “Comparison of multiobjective evolutionary algorithms: Empirical results”, Evolutionary computation, 8(2): 173-195.
[27] Goh, C.K., Tan, K.C., Liu, D.S., Chiam, S.C., (2010). “A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design”, European Journal of Operational Research, 202(1): 42-54.