ارائه یک الگوریتم ژنتیک ترکیبی جدید برای حل مدل چندهدفه مسئله مکانیابی نقاط انتقال با در نظر گرفتن مقدار تخصیص و وسایل حمل متفاوت: رویکرد مطالعه موردی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده صنایع، دانشگاه علم و صنعت ایران، تهران.

2 استادیار، دانشکده صنایع دانشگاه علم و صنعت ایران، تهران.

چکیده

مسئله مکانیابی نقطه انتقال عموماًبه یافتن مکان بهینه نقطه انتقال بین تسهیل و مجموعه­ای از نقاط تقاضا اتلاق می­شود، به طوری ­که حداکثر فاصله (مجموع فواصل) مشتریان تا تسهیل از طریق نقطه انتقال در شرایط قطعی حداقل گردد. از این رو مقاله پیش­رو،سعی بر مدل‌سازی مسئله مذکور به صورت چند هدفه به ازای مکانیابی یک یا چند نقطه انتقال در حضور یک یا چند تسهیل، تحت شرایط قطعی در فضای شبکه دارد. اهداف مورد نظر نیز مشتمل بر کمینه‌سازی مجموع هزینه­های حمل و نقل و برپایی نقاط انتقال، کمینه سازی مجموع زمان­های جابجایی و بیشینه‌سازی مقدار پوشش می­باشند. هم­چنین بهدلیل پیچیدگی بالای محاسباتیّ‌، از یک نوع الگوریتم ژنتیک ترکیبی جدید جهت حل مدل بکار گرفته شده و به جوابنزدیکبهبهینهدرزمانمحدود بسنده شدهاست.در انتها، اعتبار و کاربرد مدل‌سازی پیشنهادی تحت شرایط قطعی، از طریق ارائه یک مطالعه موردی در مورد سیستم توزیع گندم اسیاب شده درشهرستان اندیمشک استان خوزستان نشان داده شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A novel hybrid Genetic Algorithm for solving multi objective model of transfer point location problem considering allocation and different transportation vehicles: a case study approach

نویسندگان [English]

  • Aghdas Badiei 1
  • Kamran Shahanaghi 2
  • Hamed Kalantari 1
چکیده [English]

The Transfer Point Location Problem is about locating optimum transfer point between the facility and a set of demand points, such that the maximum distance or the sum of the distances between the customers and the facility through the transfer point is minimized in certain environment. Thus, in this thesis the goal is to construct the modeling of the aforesaid problem, in  case of multi objectives with respect to locating the single or multiple transfer point(s), in the certain environment and network topology when one or more facility exist. The objectives are about minimizing total cost of transfer points set up and transportation, minimizing total time of transfer and maximizing demand covering. In addition, due to high computational complexity of problem for acquiring a solution near to optimum in limited time, one type of proposed hybrid genetic algorithm is used. At last, the validation and the application of the developed model in certain environment are shown by a case study of ground wheat distribution system in Andimeshk of Khozestan.    

کلیدواژه‌ها [English]

  • Goal Programming
  • hybrid Genetic algorithm
  • Multiple location of transfer points
  • Multi-objective Facility location problem

[1]     Arasteh, K.,Bozorgi Amiri A.,Jabalamelr, M.S., (2015). “The multiple locations of facilities and transfer points in disaster”, Journal of Operational research and its applications, 12(1): 21-31.

[2]     Berman, O., Drezner, Z., Wesolowsky, G., (2007). “The transfer point location problem”, European Journal of Operational Research, 179: 978-989.

[3]     Drezner, Z., Wesolowsky, G.O., (2001). “On the collection depots location problem”, European Journal of Operational Research, 130: 510-518.

[4]     Berman, O., Drezner, Z., Wesolowsky, G.O., (2002). “The collection depots location problem on networks” Naval Research Logistics (NRL), 49: 15-24.

[5]     Berman, O., Huang, R., (2004). “Minisum collection depots location problem with multiple facilities on a network”, Journal of the Operational Research Society, 55: 769-779.

[6]     Tamir, A., Halman, N., (2005). “One-way and round-trip center location problems”, Discrete Optimization, 2: 168-184.

[7]     Benkoczi, R., Bhattacharya, B.K., Das, S., Sember, J., (2009). “Single facility collection depots location problem in the plane”, Computational Geometry, 42: 403-418.

[8]     Wang B.F., Ye J.H., Chen P.J., (2012). “On the Round-Trip 1-Center and 1-Median Problems”, WALCOM: Algorithms and Computation, 100-111.

[9]     Chien-Chang, C., (2007). “A fuzzy MCDM
for solving marine transshipment container
port selection problems”, Applied Mathematics
and Computation. 186: (1):435-444.  doi:10.1016/ j.amc.2006.07.125.

[10] Ponnambalam, S.G., Jagannathan, H., Kataria, M., Gadicherla, A., (2004). “A TSP-GA multi-objective algorithm for flow-shop scheduling”, International Journal of Advanced Manufacturing Technology, 23(11-12): 909-915.

[11] Bertsimas, D., (1989). “Traveling salesman facility location problems”, Transportation Science, 23: 184-191.

[12] Drezner, Z., Wesolowsky, G. O. (2003). “Network design: selection and design of links and facility location”, Transportation Research Part A: Policy and Practice, 37: 241-256.

[13] Lapierre, S., Ruiz, A., Solarno, P., (2004). “Designing distribution networks: formulation and solution heuristic”, Transportation Science, 38: 174-187.

[14] Ishfaq, R., Sox, C.R., (2011), “Hub location–allocation in intermodal logistic networks”, European Journal of Operational Research, 210(2): 213-230.

[15] Contreras, I., Cordeau, J.F., Laporte, G., (2011). “Stochastic uncapacitated hub location”, European Journal of Operational Research, 212(3): 518-528.

[16] Alumur, S. & Kara, B. Y., (2008). “Network hub location problems: The state of the art”, European Journal of Operational Research, 190, 1-21.

[17] Alumur, S.A., Kara, B.Y., Karasan O.E., (2012). Multimodal hub location and hub network design. Omega 40 (6):927-939.

[18] Nguyen, V.P., Prins, C., Prodhon, C., (2012). “A multi-start iterated local search with tabu list and path relinking for the two-echelon location-routing problem”, Engineering Applications of Artificial Intelligence, 25(1): 56-71.

[19] Ishfaq, R., Sox, C. R., (2011). “Hub location-allocation in intermodal logistic networks”, European Journal of Operational Research, 210: 213–230.

[20] Berman, O., Drezner, Z., Wesolowsky, G.O., (2004a). “The hub location problem” Working paper.

[21] Berman, O., Drezner, Z., Wesolowsky, G.O., (2004b). "The hub location-allocation problem" Working paper.

[22] Berman, O., Drezner, Z., Wesolowsky, G.O., (2004c). "The facility and hub location-allocation problem" Working paper.

[23] Berman, O., Drezner, Z., Wesolowsky, G.O., (2005). “The facility and transfer points location problem” International Transactions in Operational Research, 12: 387-402.

[24] Berman, O., Drezner, Z., Wesolowsky, G.O., (2008). “The multiple location of transfer points” Journal of the Operational Research Society, 59: 805-811.

[25] Sasaki, M., Furuta, T., Suzuki, A., (2008). “Exact optimal solutions of the minisum facility and transfer points location problems on a network” International Transactions in Operational Research, 15: 295-306.

[26] Mahmudian, M., Keivani, A., Davoudpour, H., Jaafari, A.A., (2010). “Two Iterative Algorithms for Transfer Point Location Problem" Journal of American Science”, 6(9): 827-830.

[27] Hosseinijou, S.A., Bashiri, M., (2009). “New Stochastic Models for Minimax Transfer Point Location Problem”, IEEE, 1231-1236.

[28] Hosseinijou, S.A., Bashiri, M., (2011). “Stochastic models for transfer point location problem”, The International Journal of Advanced Manufacturing Technology, 58(1): 211-225.

[29] Kalantari, H., A. Yousefli, Ghazanfari, M., Shahanaghi, K., (2013). “Fuzzy transfer point location problem: a possibilistic unconstrained nonlinear programming approach”, The International Journal of Advanced Manufacturing Technology, 1(11): 2173-2187.

[30] Jabbarzadeh, A., Darbaniyan, F., Jabalameli, M.S., (2016). “A Multi-objective Model for Location of Transfer Stations: Case Study in Waste Management System of Tehran”, Journal of Industrial and Systems Engineering, 9(1): 109-125.

[31] Ebrahimi Zade A., Lotfi, M.M., (2015). “Stochastic facility and transfer point covering problem with a soft capacity constraint”, International transactions in operational research, doi:10.1111/itor.12218.

[32] Charnes, A., Cooper, W., (1961). “Management Models and Industrial Applications of Linear Programming” Wiley, New York.

[33] Eiben, A.E., Smit, S.K., (2011). “Evolutionary algorithm parameters and methods to tune them Autonomous search”, Springer, 41: 15-36.

[34] Korel, Bogdan., (1996). “Automated test data generation for programs with procedures.”, ACM SIGSOFT Software Engineering Notes, 21(3): 209-213.