ارائه مدل ریاضی استوار و الگوریتم حل ابتکاری برای مسئله یکپارچه تولید-مسیریابی-موجودی محصولات فاسدشدنی با انتقال جانبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد مهندسی سیستم‌های اقتصادی- اجتماعی، گروه اقتصاد، موسسه عالی آموزش و پژوهش مدیریت و برنامه‌ریزی، تهران.

2 استادیار، دانشکده مهندسی صنایع، دانشگاه علم و صنعت، تهران.

چکیده

در این مقاله، یک مدل ریاضی استوار برای مسئله یکپارچه تولید- موجودی- مسیریابی محصولات فاسدشدنی تحت عدم قطعیت تقاضادر یک شبکه­ای شامل یک تولیدکننده و مجموعه­ای از خرده­فروشان ارائه می­شود، که در آن، انتقال­ بین خرده­فروشان  به منظور مقابله با عدم قطعیت تقاضای مشتریان در نظر گرفته می­شود. همچنین، موازنه­ای بین استواری راه­حل و استواری مدل نیز انجام می­شود که می­تواند به تصمیم­گیری در رابطه با برنامه­ریزی تحویل­ها، میزان تولید و میزان انتقال بین خرده فروشان کمک کند. از آنجایی که مسئله ذکر شده در دسته مسائل NP-Hard قرار می‌گیرد، یک الگوریتم حل ابتکاری برای حل آن پیشنهاد می­شود، که در هر مرحله از جستجو  با انجام بهترین تغییر در مسیرهای وسیله نقلیه، راه­حل را به یک راه­حل بهتر هدایت می­کند. درنهایت، الگوریتم پیشنهادی بر روی مجموعه داده­های موجود در ادبیات و یک مطالعه موردی واقعی اجرا شده که نتایج، کارایی بالای این الگوریتم از لحاظ زمان و کیفیت جواب­ها را آشکار می­سازد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Robust Mathematical Model and Heuristic Solution Algorithm for Integrated Production-Routing-Inventory Problem Of Perishable Products with Lateral Transshipment

نویسندگان [English]

  • Fatemeh Jafarkhan 1
  • saeed Yaghoubi 2
1
2
چکیده [English]

In this paper, a robust mathematical model for integrated production- routing- inventory problem ofperishable product under uncertain demand in a network consisting of a producer and set of retailers, is presented, where the transshipment among retailers is considered to deal with uncertainty of customers' demand. Moreover, the tradeoff between the solution robustness and model robustness can help in decision making about planning of deliveries, the quantity of production and the quantity of transshipment among retailers. Since the mentioned problem is in category of NP-Hard problems, a heuristic solution algorithm is proposed for solving it that guide the solution to a better solution through conducting the best change in vehicle routes in each step of search. Finally, the proposed algorithm isapplied on benchmark instances from literature and a real case study, that results reveal the effectiveness of the algorithm in terms of time and quality of solutions.

کلیدواژه‌ها [English]

  • Integrated production- routing- inventory problem
  • Perishable product
  • Heuristic solution algorithm
  • Transshipment
  • Robust optimization. 
[1]     Gong, W., Fu, Z., (2010). “ABC-ACO for perishable food vehicle routing problem with time windows. In Computational and Information Sciences (ICCIS)”, International Conference on, Chengdu, 1261-1264.
[2]     Xunyu, X., Tomohiro, M., (2010). “Perishable goods delivery and scheduling with time window by genetic algorithm”, In 2010 IEEE International Conference on Automation and Logistics, Hong Kong and Macau, 587-592.
[3]       طالعی­زاده عطاالله، صالحی علی (1394). مدل کنترل موجودی با طول دوره بازپرسازی تصادفی و پرداخت معوقه برای کالاهای فسادپذیر، نشریه پژوهش­های مهندسی صنایع در سیستم­های تولید 3(5): 13-25.
[4]     Coelho, L.C., Laporte, G., (2014). “Optimal joint replenishment, delivery and inventory management policies for perishable products”, Computers & Operations Research, 47: 42-52.
[5]     Federgruen, A., Prastacos, G., Zipkin, P.H., (1986). “An allocation and distribution model for perishable products”, Operations Research, 34(1): 75-82.
[6]     Zaeri, M. S., Shahrabi, J., Pariazar, M., Morabbi, A., (2007). “A combined spatial cluster analysis-traveling salesman problem approach in location-routing problem: A case study in Iran”, In 2007 IEEE International Conference on Industrial Engineering and Engineering Management, Singapore, 1599-1602.
[7]     Farahani, P., Grunow, M., Günther, H.O., (2012). “Integrated production and distribution planning for perishable food products”, Flexible services and manufacturing journal, 24(1): 28-51.
[8]     Chen, H. K., Hsueh, C.F., Chang, M.S., (2009). “Production scheduling and vehicle routing with time windows for perishable food products”, Computers & operations research, 36(7): 2311-2319.
[9]     Seyedhosseini, S.M., Ghoreyshi, S.M., (2014). “An integrated model for production and distribution planning of perishable products with inventory and routing considerations”, Mathematical Problems in Engineering, 1-9.
[10]Zu, L., Li, W., Kurz, M.E., (2014). “Integrated Production and distribution problem with pickup and delivery and multiple trips”, InProceedings of the 2014 Industrial Engineering Research Conference.
[11]Gunpinar, S., Centeno, G., (2015). “Stochastic integer programming models for reducing wastages and shortages of blood products at hospitals”, Computers & Operations Research, 54: 129-141.
[12]Fontaine, M.J., Chung, Y.T., Rogers, W.M., Sussmann, H D., Quach, P., Galel, S.A., Erhun, F., (2009). “Improving platelet supply chains through collaborations between blood centers and transfusion services”, Transfusion, 49(10): 2040-2047.
[13]Nagurney, A., Masoumi, A.H., Yu, M., (2012). “Supply chain network operations management of a blood banking system with cost and risk minimization”, Computational Management Science, 9(2): 205-231.
[14]Munson, C. (2013). The Supply Chain Management Casebook: Comprehensive Coverage and Best Practices in SCM. Pearson Education.
[15]Civelek, I., Karaesmen, I., & Scheller-Wolf, A. (2015). Blood platelet inventory management with protection levels, European Journal of Operational Research, 243(3): 826-838.
[16]Haijema, R., van der Wal, J., & van Dijk, N. M. (2007). Blood platelet production: Optimization by dynamic programming and simulation, Computers & Operations Research, 34(3): 760-779.
[17]Haijema, R., van Dijk, N., van der Wal, J., & Sibinga, C. S. (2009). Blood platelet production with breaks: optimization by SDP and simulation, International Journal of Production Economics, 121(2): 464-473.
[18]Hemmelmayr, V., Doerner, K. F., Hartl, R. F., & Savelsbergh, M. W. (2009). Delivery strategies for blood products supplies, OR spectrum, 31(4): 707-725.
[19]Blake, J., Heddle, N., Hardy, M., Barty, R. (2009). “Simplified platelet ordering using shortage and outdate targets”.
[20]Lang, J.C., (2010). “Blood bank inventory control with transshipments and substitutions”. In Production and inventory management with substitutions”. Springer Berlin Heidelberg, 205-226.
[21]Duan, Q., Liao, T.W., (2013). “A new age-based replenishment policy for supply chain inventory optimization of highly perishable products”, International Journal of Production Economics, 145(2): 658-671.
[22] Broekmeulen, R.A., van Donselaar, K.H., (2009). “A heuristic to manage perishable inventory with batch ordering, positive lead-times, and time-varying demand”, Computers & Operations Research, 36(11): 3013-3018.
[23]Adulyasak, Y., Cordeau, J.F., Jans, R., (2015). “The production routing problem: A review of formulations and solution algorithms”. Computers & Operations Research, 55: 141-152.
[24]Solyalı, O., Cordeau, J.F., Laporte, G., (2012). “Robust inventory routing under demand uncertainty”. Transportation Science, 46(3): 327-340.
[25]Bertsimas, D., Sim, M., (2003). “Robust discrete optimization and network flows”, Mathematical programming, 98(1): 49-71.
[26]Bertsimas, D., Sim, M. (2004). “The price of robustness”. Operations research, 52(1): 35-53.
[27]Huang, S.H., Lin, P.C., (2010). “A modified antcolony optimization algorithm for multi-item inventory routing problems with demand uncertainty”, Transportation Research Part E: Logistics and Transportation Review, 46(5): 598-611.
[28]Lefever, W., Hadj-Hamou, K., Aghezzaf, E.H. (2015). “Robust inventory routing problem with variable travel times”, In 16ème Congrès Annuel de la Société Française de Recherche Opérationnelle et d'Aide à la Décision (ROADEF 2015).
[29]Sokol, C.Z.G.N.J., Papageorgiou, M.S.C.D., (2015). “Robust inventory routing with flexible time window allocation”, Working paper.
[30]Mulvey, J.M., Ruszczyński, A., (1995). “A new scenario decomposition method for large-scale stochastic optimization”, Operations research, 43(3): 477-490.
[31]Yu, C.S., Li, H.L., (2000). “A robust optimization model for stochastic logistic problems”, International Journal of Production Economics, 64(1): 385-397.
[32]Coelho L.C, Cordeau J.F, Laporte G., (2011). “The inventory-routing problem with transshipment”, Technical Report 21, CIRRELT, Montre´ al, Canada.
[33]Croes, G.A., (1958). “A method for solving traveling-salesman problems”, Operations research, 6(6): 791-812.
[34]Coelho, L.C., Cordeau, J.F., Laporte, G., (2012). “Consistency in multi-vehicle-inventory routing”,
Transportation Research Part C: Emerging Technologies, 24: 270-287.
[35]Archetti, C., Bertazzi, L., Hertz, A., Speranza, M.G., (2012). “A hybrid heuristic for an inventory routing problem”, INFORMS Journal on Computing, 24(1): 101-116.
[36]  مجیدی ستاره، حسینی مطلق سیدمهدی، یعقوبی سعید، جوکار عباس (1394). ارائه مدل ریاضی مسیریابی سبز با در نظر گرفتن محدودیت گذاشت و برداشت همزمان و پنجره زمانی سخت و یک روش حل ابتکاری مبتنی بر جستجوی همسایگی انطباقی، نشریه پژوهش­های مهندسی صنایع در سیستم­های تولید 3(6): 149-165.
[37]Lalmazloumian, M., Wong, K.Y., Govindan, K., Kannan, D., (2013). “A robust optimization model for agile and build-to-order supply chain planning under uncertainties”, Annals of Operations Research, 242(2): 1-36.