[1] Efroymson, M. A., Ray, T. L., (1996), "A branch-bound algorithm for plant location", Operations Research 14(3): 361-368.
[2] Khumawala, B. M., (1972), "An efficient branch and bound algorithm for the warehouse location problem",
Management Science 18(12): B-718 - B-731.
[3] Erlenkotter, D., (1978), "A dual-based procedure for uncapacitated facility location", Operations Research 26(6): 992-1009.
[4] Guignard, M., (1977), "Algorithms for exploiting the structure of the simple plant location problem", Annals of Discrete Mathematics 1: 247-277.
[5] Cornuéjols, G., Nemhauser, G. L., Wolsey, L. A., (1983), “The uncapacitated facility location problem (No. MSRR-493)”, Carnegie-mellon univ pittsburgh pa management sciences research group.
[6] Kuehn, A. A., Hamburger, M. J., (1963), "A heuristic program for locating warehouses",
Management Science 9(4):643-666.
[7] Akinc, U., Khumawala, B. M., (1977), "An efficient branch and bound algorithm for the capacitated Warehouse Location Problem", Management Science 23(6): 585- 594.
[8] Roy, T. J. V., (1986), "A cross decomposition algorithm for capacitated facility location",
Operations Research 34(1): 145-163.
[9] Beasley, J. E., (1988), "An algorithm for solving large capacitated warehouse location problems", European Journal of Operational Research 33(3): 314-325.
[10] Gong, D., Gen, M., Yamazaki, G., Xu, W., (1996), “Neural network approach for allocation with capacity”, Computers & industrial engineering, 31(3), 849-854.
[11] Harris, I., Mumford, C., Naim, M., (2009), "The multi-objective uncapacitated facility location problem for green logistics", IEEE Xplore Conference: Evolutionary Computation, CEC '09.
[12] Kohli, A., (2009), "Efficient Solutions for the Multi-Objective Warehouse Problems", Masters of Science Thesis In Mathematics and Computing, School of Mathematics and Computer Applications Thapar University.
[13] Myung, Y. S., Kim, H., Tcha, D., (1997), "A bi-objective uncapacitated facility location problem", European Journal of Operational Research 100(3): 608-616.
[15] Janáček, J., Gábrišová, L., (2005), "Fuzzy Approach to the Capacity Constraint Relaxation”, Journal of Information, Control and Management Systems 3(2): 81-89.
[16] Jr, M. A. A., Kadipasaoglu, S. N., Khumawala, B. M., (2006), "An empirical comparison of Tabu Search, Simulated Annealing and Genetic Algorithms for facilities location problems", International Journal of Production Economics 103(2): 742–75.
[17] Aboolian, R., Carrizosa, E., Guerrero, V., (2014), "An Efficient Approach for Solving Uncapacitated Facility Location Models with Concave Operating Costs," XII Global Optimization Workshop.
[18] Harris, I., Mumford, C. L., Naim, M. M., (2014), “A hybrid multi-objective approach to capacitated facility location with flexible store allocation for green logistics modeling”, Transportation Research Part E: Logistics and Transportation Review, 66, 1-22.
[19] Aikens, C. H., (1985), "Facility location models for distribution planning", European Journal of Operational Research 22(3): 263-279.
[20] Kratica, J., Dugošija, D., Savić, A., (2014), "A new mixed integer linear programming model for the multi level uncapacitated facility location problem" Applied Mathematical Modelling 38(7-8): 2118-2129.
[21] Marić, M., Stanimirović, Z., Milenkovic, N., Djenic, A., (2015), "Metaheuristic Approaches to Solving Large-scale Bilevel Uncapacitated Facility Location Problem with Clients'preferences" Yugoslav Journal of Operations Research, 25(3): 361-378.
[22] Fischetti, M., Ljubic, I., Sinnl, M., (2014), "Thinning out facilities: a Benders decomposition approach for the uncapacitated facility location problem with separable convex costs",
http://homepage.univie.ac.at/ markus.sinnl/wp-content/ uploads/ 2013/09/ thinning_out_facilities.pdf.
]23[ماکویی، ا.، سراجیان، ا.، ترکستانی، ا.، (1393)، "مروری بر مقالات مکانیابی تسهیلات با استفاده از تئوری بازیها"، نشریه پژوهش های مهندسی صنایع در سیستم های تولید, 2(3), 1-19.
[24] Karp, R., (1972), “Reducibility among Combinatorial Problems”, Part of the series The IBM Research Symposia Series, 85-103.
[25] Karp, R., (1972), “Reducibility among Combinatorial Problems”, Part of the series The IBM Research Symposia Series, 85-103.
[26] Sivanandam, S. N., Deepa. S. N., (2008), "Genetic Algorithm Optimization Problems", Springer, ISBN: 978-3-540-73189-4 (Print) 978-3-540-73190-0 (Online).
[27] John Henry Holland., (1992), "Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence", MIT press.
[28] Diamond, P., Kloeden, P., (1990), “Metric spaces of fuzzy sets”, Fuzzy sets and systems 35(2): 241-249.
[29] Bortolan, G., Degani, R., (1985), "A review of some methods for ranking fuzzy subsets", Fuzzy Sets and Systems 15(1): 1-19.
[30] Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., (1983), “Optimization by simulated annealing”, science, 220(4598), 671-680.
[31] Černý, V., (1985), “Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm”, Journal of optimization theory and applications 45(1), 41-51
[32] Smit, S. K., Eiben, A. E., (2009), Comparing parameter tuning methods for evolutionary algorithms. In Evolutionary Computation, 2009. CEC'09. IEEE Congress on (399-406).