تحلیل سیستم تولیدی MTS/MTO با مدلسازی صف مبتنی بر ورود گروهی پواسون و سرویس ارلنگ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه الزهرا، تهران.

2 دانشجوی دکتری مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه الزهرا، تهران.

چکیده

در این تحقیق از طریق مدلسازی با نظریه صف، رفتار یک سیستم تولیدی MTS/MTO شامل دو ایستگاه، مورد تحلیل قرار گرفته است. در ایستگاه اول، کالاهای نیمه ­ساخته تولیدشده و در انبار میانی (بافر) که بر اساس سیاست ذخیره پایه کنترل می­ شود، نگهداری می­ گردد. در ایستگاه دوم، پس از دریافت سفارش مشتری کالای نیمه­ ساخته به­ منظور تأمین سفارش مشتری تکمیل و سفارشی­ سازی می ­شود. زمان تولید در ایستگاه اول دارای توزیع نمایی و در ایستگاه دوم دارای توزیع ارلنگ نوع k می ­باشد. تقاضای مشتریان نیز دارای توزیع پواسون و به­ صورت ورود گروهی می ­باشد. هدف از این پژوهش تعیین نقطه بهینه نفوذ سفارش و ظرفیت بهینه بافر می ­باشد که بر اساس حداقل هزینه کل که شامل هزینه­ های نگهداری، کسری و تولید کالاهای نامنطبق با سفارش مشتری می ­باشد مشخص شدند. به منظور ارزیابی عملکرد و تعیین هزینه ­های سیستم، احتمالات پایداری با استفاده از روش تحلیل ماتریس محاسبه گردید. نتایج نشان می­ دهد، اگر چه تغییر ظرفیت انبار میانی و نرخ ورود مشتریان ارتباط مستقیمی با مقدار بهینه نقطه نقوذ سفارش ندارد ولی با افزایش درصد عدم ­انطباق کالاهای نیمه ­ساخته با تقاضای مشتریان و همچنین افزایش نرخ سرویس ­دهی در ایستگاه اول نقطه نفوذ سفارش کاهش می­ یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysing MTO/MTS manufacturing system with batch arrival Poisson process and Erlang processing time through queueing theory

نویسندگان [English]

  • jafar Bagherinejad 1
  • Arezo Ghahghaei 2
1 Department of Industrial Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran.
2 Department of Industrial Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran.
چکیده [English]

In this paper, a two-stage MTO/MTS manufacturing system is analysed through queuing theory. In the first stage, semi-finished items are manufactured and held in intermediate buffer which is controlled by base stock policy. In the second stage, semi-finished items are customized when customers’ orders arrive. Processing time are assumed to be exponentially distributed at the stage one and follows Erlang distribution at the stage two. Demand follows a batch arrival Poisson process. Stationary probabilities are calculated using analytic matrix approach to evaluate performance measures and total cost function. Optimal point of differentiation and semi-finished goods buffer size are determined to minimize total cost function. Results show that optimal point of differentiation is not sensitive to semi-finished goods buffer size and customers’ arrival rate but decreases as the probability of manufacturing unsuitable items and processing time at the first stage increases.

کلیدواژه‌ها [English]

  • Point of differentiation
  • Buffer size
  • MTS/MTO analysis with Queueing system
  • Analytic matrix approach
[1] Jewkes, E.M., Alfa, A.S. (2009). “A queuing model of delayed product differentiation”, European Journal of Operational Research 199: 734-743.
[2] Ngniatedema, T., Fono, L.A. and Mbondo, G.D. (2015). “A delayed product customization cost model with supplier delivery performance”, European Journal of Operational Research 243(1): 109-11.
[3] خسروشاهی، ح، معطر حسینی، س. م.،  مرجانی، م. ر.، (1393)، "اندازه­گیری اثر شلاق چرمی در یک زنجیره تأمین خطی سه سطحی با استفاده از روش میانگین متحرک با استفاده از روش میانگین متحرک برای برآورد تقاضا"، نشریه پژوهش­های مهندسی صنایع در سیستم­های تولید2(4): 21-37.
[4] طالعی­زاده، ع.، صالحی، ع.، (1394)، "مدل کنترل موجودی با طول دوره بازپرسازی تصادفی و پرداخت معوقه برای کالاهای فسادپذیر"، نشریه پژوهش­های مهندسی صنایع در سیستم­های تولید 1(5): 13-25.
[5] Almehdawe, E., Jewkes, E. (2013). “Performance analysis and optimization of hybrid manufacturing systems under a batch ordering policy”, International Journal of Production Economic 148(1): 200-208.
[6] Li, L., Lee, Y.S. (1994). “Pricing and delivery-time performance in a competitive Environment”, Management Science, 40(5): 633-646.
[7] Zhou, W., Zhang, R., Zhou, Y. (2013). “A queuing model on supply chain with the form postponement strategy”, Computers & Industrial Engineering 66(4): 643-652.
[8] Zhou, W., Huang, W., Zhang, R. (2014). “A two-stage queueing network on form postponement supply chain with correlated demands”, Applied Mathematical Modeling 38(11-12): 2734-2743.
[9] Yang, B., Burns, N.D., Bakhouse, C.J. (2004). “Postponement: a review and an integrated framework”, International Journal of Operations and Production Management, 24(5): 468-487.
[10] Olhager, J. (2003). “Strategic positioning of the order penetration point”, International Journal of Production Economic, 85: 319-329.
[11] Yang, B., Burns, N.D. (2003). “Implications and postponement for the supply chain”, International Journal of Production Research 41(9): 2079-2090.
[12] Mikkola, J.H., Larson, T.S. (2004). “Supply chain integration: implication for mass customization modularization and postponement strategies”, Production Planning and Control, 15(4): 352-361.
[13] Ahmadi, M., Teimouri, E. (2008). “Determining the Order Penetration Point in Auto Export Supply Chain by the Use of Dynamic Programming”, Journal of Applied Sciences 8(18): 3214-3220.
[14] Gupta, D., Benjaafar, S. (2004). “Make-to-order, make-to-stock, or delay product differentiation? A common framework for modeling and analysis”, IIE Transactions 36: 529-546.
[15] Suna, X.Y., Suna, L.Y., Wang, Y.L. (2008). “Positioning multiple decoupling points in a Supply Network”, International Journal Production Economics 113: 943-956.
[16] Teimoury, E., Modarres, M., Khondabi, I.G., Fathi, M.. (2012). “A queuing approach for making decisions about order penetration point in multi-echelon supply chains”, International Journal of Advanced Manufacturing Technology, Volume 63(1-4): 359-371.
[17] Chang, K., Lu, Y. (2010). “Queuing analysis of a single-station make-to-stock/make-to-order inventory-production system”, Applied Mathematical Modeling, 34: 978-991.
[18] Kaminsky, P., Kaya, O. (2009). “Combined make-to-order/ make-to-stock supply chains”, IIE Transaction, 41: 103-119.
[19] Stewart, J.W. (2009). “Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of Performance Modeling”, Princeton University Press.