زمانبندی مجدد زنجیره تأمین سه مرحله‌ای با تمرکز بر یکپارچگی مراحل آن

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه سمنان

چکیده

    زمانبندی مجدد جزئی از فرآیند تصمیم‌گیری در زنجیره تأمین بسیاری از صنایع تولیدی محسوب می‌شود که نقش مهمی در برآورده‌سازی نیازهای مشتریان ایفا می‌نماید. از این‌رو این مقاله به بررسی مساله زمانبندی مجدد در یک زنجیره تأمین سه مرحله‌ای، با تمرکز بر یکپارچگی مراحل آن می‌پردازد. مرحله اول شامل تأمین کنندگان، مرحله دوم شامل ناوگان حمل و نقل کالاها و مرحله سوم شامل یک شرکت سازنده محصولات نهایی است. به این منظور ابتدا مدل عدد صحیح مختلط برای مساله مذکور با هدف کمینه‌سازی مجموع زمان تاخیر تکمیل کلیه سفارشات توسعه داده شده است. همچنین در حالت کلی یک الگوریتم ژنتیک که دارای کروموزوم‌هایی با ساختار متغیر است، به منظور حل مساله ارایه شده است. مقایسه الگوریتم پیشنهادی با الگوریتم جستجوی تصادفی روی طیف متنوعی از مسایل تصادفی و همچنین جواب بهینه روی مسایل تصادفی با ابعاد کوچک نشان از عملکرد خوب الگوریتم پیشنهادی دارد. همچنین با ساده­سازی فرضیات مساله، الگوریتم پیشنهادی با دو الگوریتم ابتکاری موجود در ادبیات موضوع مقایسه شده است که نشان از برتری الگوریتم پیشنهادی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Rescheduling of Three-stage Supply Chain with a Focus on Integration of the Stages

نویسندگان [English]

  • Mohammad Ali Beheshtinia
  • Isa Akbari
Semnan University
چکیده [English]

Rescheduling is considered as a part of decision making process in supply chain of many manufacturing industries and it plays a significant role in fulfillment of consumers’ needs. Hereupon, this article addresses the issue of rescheduling in a three-stage supply chain with a focus on integration of the stages. The first stage includes suppliers, the second stage includes fleet of good transportation and the third stage includes manufacturers of final products. Therefore, the mixed integer model has been used for the mentioned problem with the aim of minimizing the total tardiness time of the orders. In the general case, a genetic algorithm has been provided for problem solving which has chromosomes with variable structures. Comparison between the results of the proposed algorithm with  Random Search on a wide range of random problems and optimum solution on the small size problems shows the good performance of the proposed algorithm. Moreover, by relaxing of the some attributes of the problem, the proposed algorithm was compared with two existing heuristic algorithms in the literature. Results show the better performance of the suggested algorithm.

کلیدواژه‌ها [English]

  • Supply chain
  • Rescheduling
  • Genetic Algorithm
  • Transportation
  • Tardiness
[1]       Rao, K., Janardhana, G. (2014). The Effect of Rescheduling on Operating Performance of the Supply Chain under Disruption-A Literature Review, Applied Mechanics and Materials, 592-594: 2704-2710.
[2]       Vieira, G.E., Herrmann, J.W., Lin, E. (2003). Rescheduling manufacturing systems: a framework of strategies, policies, and methods, Journal of Scheduling, 6(1): 39-62.
[3]      دانش‌آموز، فاطمه؛ جباری، مونا؛ فتاحی، پرویز (1393). ارائه مدلی برای زمانبندی خط تولید کارگاهی همراه با یک مرحله مونتاژ موازی با هدف کمینه‌سازی حداکثر دوره ساخت، نشریه پژوهش‌های مهندسی صنایع در سیستم‌های تولید، 2(4): 53-39.
[4]       Yimer, A. D., Demirli, K. (2010). A genetic approach to two-phase optimization of dynamic supply chain scheduling, Computers & Industrial Engineering, 58(3): 411-422.
[5]       Averbakh, I. (2010). On-line integrated production–distribution scheduling problems with capacitated deliveries, European Journal of Operational Research, 200(2): 377–384.
[6]       Rostamian Delavar, M., Hajiaghaei-Keshteli, M. and Molla-Alizadeh-Zavardehi, S. (2010). Genetic algorithms for coordinated scheduling of production and air transportation, Expert Systems with Applications, 37(12): 8255–8266.
[7]       Scholz-Reiter, B., Frazzon, E. M., Makuschewitz, T. (2010). Integrating manufacturing and logistics systems along global supply chains, CIRP Journal of Manufacturing Science and Technology, 2(3): 216–223.
[8]       Yeung, W., Choi, T., Cheng, T.C.E. (2011). Supply chain scheduling and coordination with dual delivery modes and inventory storage cost. International Journal of Production Economics, 132(2): 223–229.
[9]       Liu, S., Chen, A. (2012). Variable neighborhood search for the inventory routing and scheduling problem in a supply chain, Expert Systems with Applications, 39(4): 4149–4159.
[10]   Osman, H., Demirli, K. (2012). Economic lot and delivery scheduling problem for multi-stage supply chains, International Journal of Production Economics, 136(2): 275–286.
[11]   Averbakh, I., Baysan, M. (2013). Approximation algorithm for the on-line multi-customer two-level supply chain scheduling problem. Operations Research Letters, 41(6): 710–714.
[12]   Ren, J., Du, D., Xu, D. (2013). The complexity of two supply chain scheduling problems, Information Processing Letters, 113(17): 609–612.
[13]   Ullrich, C. A. (2013). Integrated machine scheduling and vehicle routing with time windows. European Journal of Operational Research, 227(1): 152–165.
[14]   Sawik, T. (2014). Joint supplier selection and scheduling of customer orders under disruption risks: Single vs. dual sourcing. Omega, 43, 83–95.
[15]   Zhang, L., Wong, T. (2015). An object-coding genetic algorithm for integrated process planning and scheduling, European Journal of Operational Research, 244 (2): 434–444.
[16]   Jin, W. S., Feng, X. L., Zhou, B. H. (2007). Filtered-beam-search-based algorithm for dynamic rescheduling in FMS. Robotics and Computer-Integrated Manufacturing, 23(4): 457–468.
[17]   Adhitya, A., Srinivasan, R., Karimi, I. (2007). A model-based rescheduling framework for managing abnormal supply chain events, Computers & Chemical Engineering, 31(5-6), 496–518.
[18]   Liu, S. S., Shih, K. C. (2009). Construction rescheduling based on a manufacturing rescheduling frame, Automation in Construction, 18(6): 715–723.
[19]   Zhao, C., Tang, H. (2010). Rescheduling problems with deteriorating jobs under disruptions, Applied Mathematical Modelling, 34(1): 238–243.
[20]   Yin, J., Li, T., Chen, B., & Wang, B. (2011). Dynamic Rescheduling Expert System for Hybrid Flow Shop with Random Disturbance, Procedia Engineering, 15: 3921–3925.
[21]   Rubrico, J. I., Higashi, T., Tamura, H., & Ota, J. (2011). Online rescheduling of multiple picking agents for warehouse management. Robotics and Computer-Integrated Manufacturing, 27(1): 62–71.
[22]   Palombarini, J., Martínez, E. (2012). SmartGantt – An interactive system for generating and updating rescheduling knowledge using relational abstractions, Computers & Chemical Engineering, 47: 202–216.
[23]   Zakaria, Z., Petrovic, S. (2012). Genetic algorithms for match-up rescheduling of the flexible manufacturing systems, Computers & Industrial Engineering, 62(2): 670–686.
[24]   Yu, S. P., Pan, Q. K. (2012). A Rescheduling Method for Operation Time Delay Disturbance in Steelmaking and Continuous Casting Production Process. Journal of Iron and Steel Research, International, 19(12): 33–41.
[25]   Hoogeveen, H., Lenté, C., Tkindt, V. (2012). Rescheduling for new orders on a single machine with setup times, European Journal of Operational Research, 223(1): 40–46.
[26]   Katragjini, K., Vallada, E., & Ruiz, R. (2013). Flow shop rescheduling under different types of disruption. International Journal of Production Research, 51(3): 780-797.
[27]   Liu, L., Zhou, H. (2013). On the identical parallel-machine rescheduling with job rework disruption, Computers & Industrial Engineering, 66(1): 186-198.
[28]   Liu, L., Ro, Y. (2014). Rescheduling for machine disruption to minimize makespan and maximum lateness. Journal of Scheduling, 17(4): 339-352.
[29]   Zegordi, S. H., Beheshtinia, M. A. (2009). Integrating production and transportation scheduling in a two-stage supply chain considering order assignment, The International Journal of Advanced Manufacturing Technology, 44 (9-10): 928–939.
[30]   Chang, Y., Lee, C. (2004). Machine scheduling with job delivery coordination, European Journal of Operational Research, 158(2): 470–487.
[31]   Pinedo, M. L. (2008). Scheduling Theory, Algorithms, and Systems, Springer, 3rd Edition.
[32]   Potts, C.N., Van Wassenhove, L. (1982). Decomposition algorithm for the single machine total tardiness problem, Operations Research Letters, 1 (5): 177–181.