زمانبندی چندهدفه شبکه های تولید چندکارخانه ای با استفاده از الگوریتم ژنتیک زیرجمعیت و روش ارتجاعی

نوع مقاله: مقاله پژوهشی

نویسنده

استادیار گروه صنایع دانشکده مهندسی دانشگاه بوعلی سینا

چکیده

روند جهانی‌سازی موجود سبب پیدایش رقابتی شدید برای کسب هر چه بیشتر منافع در بین تولیدکنندگان شده است. برای حفظ شرایط رقابت‌پذیری در چنین بازارهایی، کارخانه‌ها تصمیم به ایجاد شبکه تولیدی متشکل از چندین کارخانه می‌نمایند. پراکندگی اعضاء در نقاط مختلف جغرافیایی در ساختارهای توزیع‌شده سبب در دسترس بودن منابع ارزان­تر، توانایی تولید بالاتر و مواجهه سریع‌تر با تغییرات و قدرت رقابتی بالاتر شده است. به این منظور در این مقاله زمانبندی چندکارخانه‌ای توزیع شده مورد مطالعه قرار گرفته است. علاوه­بر این، با در نظر گرفتن امکان جابه‌جایی کارها در بین کارخانه‌ها سعی شده است شرایط سیستم مورد بررسی هر چه بیشتر به دنیای واقعی صنعت نزدیک گردد. بدلیل توجه کمتر به مسائل چندهدفه در زمانبندی توزیع شده، در این تحقیق پس از مدل کردن مسئله با دو تابع هدف مجموع زمان‌های دیرکرد و زودکرد کارها به­عنوان تابع هدف اول و مجموع زمان‌های تکمیل به­عنوان تابع هدف دوم، یک روش دقیق و یک الگوریتم فرابتکاری چندهدفه برای حل مساله به­کار رفته است. در پایان نیز نتایج بدست آمده از این الگوریتم با نتایج به­دست آمده از الگوریتم بر پایه گروه ذرات مقایسه و گزارش شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Multi-objective production network scheduling using sub-population genetic algorithm and elastic method

نویسنده [English]

  • Javad Behnamian
Bu-Ali Sina University
چکیده [English]

The globalization trend causes the emergence of intense competition among manufacturers to gain more profits. In order to be competitive in today’s rapidly changing business world, organizations have shifted from a centralized single factory production to a decentralized multi-factory structure. We assume that production takes place in several factories, which may be geographically distributed in different locations, in order to comply with and to take advantage from the trend of globalization. This allows them to be closer to their customers, to employ professionals, to comply with local laws, to focus on a few product types, to produce and market their products more effectively, and respond to market changes more quickly. These can be attained by transporting the jobs from an overloaded factory to the factory which has fewer workloads. Obviously, considering these assumptions, as well as multi-objective scheduling are surely more practical than those scheduling problems which do not take them into account. In this research, after formulating the scheduling problem as a mixed integer linear programming for simultaneous minimization of the sum of the earliness and tardiness of jobs and the total completion time, a new exact method and a multi-objective metaheuristic algorithm are proposed. Finally, the heuristic algorithm and the output of particle swarm-based algorithm are reported.

کلیدواژه‌ها [English]

  • Multi-objective scheduling
  • Multi-factory production
  • Elastic method
  • sub-population genetic algorithm

[1]     Shen, W.D.H. (1999). Norrie, Agent-based systems for intelligent manufacturing: A state-of-the-art survey, International Journal Knowledge and Information Systems, 1(2): 129–156.

[2]     Dhaenens-Flipo, G., Finke, G. (2001). An integrated model for an industrial production-distribution problem, IIE Transactions, 33(9): 705–715.

[3]     Soares, A.L., Azevedo, A.L., De Sousa, J.P. (2000). Distributed planning and control systems for thevirtual enterprise: Organizational requirementsand development life-cycle, Journal of Intelligent Manufacturing, 11: 253-270.

[4]    بشیری، مهدی، شرافتی، مهتاب (1392). طراحی دو هدفه شبکه زنجیره تأمین حلقه بسته با در نظر گرفتن معیارهای همبسته در محیط فازی، نشریه پژوهش‌های مهندسی صنایع در سیستم‌های تولید، شماره 1، صفحه 25-36.

[5]     Williams, J.F. (1981).  Heuristic techniques for simultaneous scheduling of production and distribution in multi-echelon structures: Theory and empirical comparisons, Management Science, 27: 336-352.

[6]       Blumenfeld, D.E., Burns, L.D., Daganzo, C.F., Frick, M.C., Hall, R.W. (1987) Reducing logistics cost at General Motors, Interfaces, 17: 26-47.

[7]       Sambasivan, M., Yahya, S. (2005). A Lagrangean-based heuristic for multi-plant, multi-item, multi-period capacitated lot-sizing problems with inter-plant transfers, Computers & Operations Research, 32: 537-555.

[8]       Pirkul, H., Jayaraman, V. (1998). A multi-commodity, multi-plant, capacitated facility location problem: Formulation and efficient heuristic solution, Computers & Operation Research, 25(10): 869-878.

[9]       Kim, Y., Yun, C., Park, S.B., Park, S., Fan, L.T. (2008). An integrated model of supply network and production planning for multiple fuel products of multi-site refineries, Computers & Chemical Engineering, 32: 2529–2535.

[10]   Zhang, M.T., Niu, S., Mai, M., Li, Q. (2005). Multi-factory optimization enables kit reconfiguration in semiconductor manufacturing, In Proceedings of the International Conference on Automation Science and Engineering Edmonton, Canada, 105 –112.

[11]   Vincent, A.C., Stephen, F.S. (2004). Wasp-like agents for distributed factory coordination, Autonomous Agents and Multi-Agent Systems, 8: 237–266.

[12]   Barroso, A.M., Torreao, J.R.A., Leite, J.C.B., Loques, O.G., Fraga, J.S. (1997). A new technique for task allocation in real-time distributed systems, InProceedings of the 7th Brazilian Symposium of Fault Tolerant Computers, Campina Grande, Brazil, 269–278.

[13]   Behdani, B., Lukszo, Z., Adhitya, A., Srinivasan, R. (2010). Decentralized vs. centralized management of abnormal situations in a multi-plant enterprise using an agent-based approach, Computer Aided Chemical Engineering, 28:1219-1224.

[14]  بهنامیان، جواد، فاطمی قمی، سیدمحمدتقی (1392). ارائه الگوریتم ترکیبی بر پایه بهینه سازی گروه ذرات و روش هایپرهیوریستیک برای زمانبندی کارخانه ­های توزیع­شده با اتحاد مجازی، نشریه پژوهش‌های مهندسی صنایع در سیستم‌های تولید، شماره 1، صفحه 1-11.

[15]   Naderi, B., Ruiz, R. (2010). The distributed permutation flowshop scheduling problem, Computers & Operations Research, 37: 754-768.

[16]   Sun, X.T., Chung Felix, S.H., Chan T.S. (2015). Integrated scheduling of a multi-product multi-factory manufacturing system with maritime transport limits, Transportation Research Part E: Logistics and Transportation Review, 79: 110–127.

[17]   Behnamian, J., Fatemi Ghomi, S.M.T. (2014). A survey of multi-factory scheduling, Journal of Intelligent Manufacturing, 27(1), 231-249.

[18]   Sule, D.R. (1997). Industrial Scheduling, 1nd ed., Boston: PWS Publishing Company.

[19]   Behnamian, J. (2014). Decomposition based hybrid VNS–TS algorithm for distributed parallel factories scheduling with virtual corporation, Computers & Operations Research, 52:  181-191.

[20]   Behnamian, J., Fatemi Ghomi, S.M.T. (2014). Realistic variant of just-in-time flowshop scheduling: Integration of Lp-metric method in PSO-like algorithm, The International Journal of Advanced Manufacturing Technology, 75 (9-12): 1787-1797.

[21]   Brucker, P. (2007). Scheduling Algorithms, 5nd ed., New York: Springer.

[22]   Zadeh, L. (1963). Optimality and non-scalar-valued performance criteria, IEEE Transactions on Automatic Control, 8: 59–60.

[23]   Chankong, V., Haimes, Y.Y. (1983). Multiobjective Decision Making: Theory and Methodology, 1nd ed., New York: Elsevier Science.

[24]   Behnamian, J., Fatemi Ghomi, S.M.T., Zandieh, A.M. (2009). multi-phase covering Pareto-optimal front method to multi-objective scheduling in a realistic hybrid flowshop using a hybrid metaheuristic, Expert Systems with Applications, 36: 11057-11069.

[25]   Behnamian, J., Fatemi Ghomi, S.M.T. (2014). Multi-objective fuzzy multiprocessor flowshop scheduling, Applied soft computing, 21: 139–148.

[26]   Talbi E.G. (2009). Metaheuristics: From Design to Implementation,John Wiley & Sons, Page 49.