Inventory Model and Pricing with linear functions price-dependent demand, time-dependent holding cost and Discount amount (purchase cost)

Document Type : Research Paper

Authors

1 Assistant professor of Industrial Engineering Department, Faculty of Engineering, Yazd University, Yazd, Iran

2 Master

Abstract

In inventory models based on the Economic Order Quantity, Demand rate and holding cost are assumed have constant value and the purchase cost is assumed constant regardless of the order size. In actual applications, the demand rate can be affected by many variables such as seasonality, selling price, and availability. Moreover, the holding cost tends to be higher for extended storage periods. Additionally, the unit purchase cost is generally lower for larger order sizes due to quantity discounts. The purpose of this paper is to develop an inventory and pricing model of a product in a supply chain consisting of multiple suppliers, multiple producers and multiple customers that have linear functions price-dependent demand, time-dependent holding cost, and cost of purchase depends on the size, so that three cases are considered simultaneously in the model. Based on these assumptions, a formulated mathematical model and an optimal solution solution algorithm are developed to maximize total profits, a case study of the problem in a manufacturing plant was carried out using real data Modified, a numerical example is given, and sensitivity analysis is performed on the effect of different parameters on the optimal solution. Our findings indicate that, first, demand function parameters and then cost and purchase parameters are the most influential factors on the profit function.

Keywords


1[ بلوریان تهرانی، محمد. (1376). بازاریابی و مدیریت بازار، چاپ اول، انتشارات چاپ و نشر بازرگانی، ایران.
]2[ حاج شیرمحمدی، علی. (1385). اصول برنامه‌ریزی و کنترل تولید و موجودی‌ها، چاپ دوم، انتشارات ارکان.
]3[ محمدهادی نیکوفکــر، وحید عبــدالله زاده، برنامه‌ریزی و کنتـرل تولیـد و موجودی‌ها، چاپ هفتم، انتشارات نگاه دانش، 1395.
[4] Sana, S. and Chaudhuri, K.S. (2004). “A Stock-Review EOQ Model with Stock-Dependent Demand, Quadratic Deterioration Rate.”, Advanced Modeling and Optimization, Vol. 6, No. 2: 25-32.
[5] Min, J. and Zhou, Y.W. (2009) “A Perishable Inventory Model under Stock-Dependent Selling Rate and Shortage-Dependent Partial Backlogging with Capacity Constraint. “, International Journal of Systems Science, Vol. 4, No. 1: 33-44.
[6] Yang, H.L., Teng, J.T. and Chern, M.S. (2010). “An Inventory Model under Inflation for Deteriorating Items with Stock-Dependent Consumption Rate and Partial Backlogging Shortages”, International Journal of Production Economics, Vol. 123, No. 1: 8-19.
[7] Lee, Y.P. and Dye, C.Y. (2012). “An Inventory Model for Deteriorating Items under Stock-Dependent Demand and Controllable Deterioration Rate.”, Computers & Industrial Engineering, Vol. 63, No. 2: 74-82.
[8] Mondal, B., Bhunia, A.K. and Maiti, M. (2003). “An Inventory System of Ameliorating Items for Price Dependent Demand Rate.”, Computers & Industrial Engineering, Vol. 45, No. 3: 43-56.
[9] Mukhopadhyay, S., Mukherjee, R.N. and Chaudhuri, K. S. (2005). “An EOQ Model with Two-Parameter Weibull Distribution Deterioration and Price-Dependent Demand.”, International Journal of Mathematical Education in Science and Technology, Vol. 36, No. 1: 25-33.
[10] Teng, J.T., Chang, C.T. and Goyal, S.K. (2005). “Optimal Pricing and Ordering Policy under Permissible Delay in Payments.”, International Journal of Production Economics, Vol. 97, No. 2: 2-12.
[11] Transchel, S. and Minner, S. (2008). “Coordinated lot-sizing and dynamic pricing under a supplier all-units quantity discount.”, BuR-Business Research, Vol. 1, No. 1: 125-141.
[12] Zhengping, D. (2010). “An Inventory Coordination Scheme of Single-Period Products under Price-Dependent Demand.”, International Conference on E-Product E-Service and Entertainment (ICEEE), pp. 1–4.
[13] You, P.S. (2004). “Inventory Policy for Products with Price and Time-Dependent Demands.”, Journal of the Operational Research Society, Vol. 56, No. 7: 73-87.
[14] Hou, K.L. and Lin, L.C. (2006). “An EOQ Model for Deteriorating Items with Price-and Stock-Dependent Selling Rates under Inflation and Time Value of Money.”, International Journal of Systems Science, Vol. 37, No. 15: 31-39.
[15] You, P.S. and Hsieh, Y.C. (2007). “An EOQ Model with Stock and Price Sensitive Demand.“, Mathematical and Computer Modelling, Vol. 45, No. 7: 42-93.
[16] Panda, D., Maiti, M.K. and Maiti, M. (2010). “Two Warehouse Inventory Models for Single Vendor Multiple Retailers with Price and Stock Dependent Demand.”, Applied Mathematical Modelling, Vol. 34, No. 11: 71-85.
]17[ سعیدی مهرآباد، محمد، اعظمی، عادل. (1396). «ارائه مدل بهینه‌سازی استوار دوسطحی در برنامه‌ریزی تولید با در نظرگیری تصمیمات قیمت‌گذاری به‌منظور پاسخگویی به تقاضا در فضای رقابتی»، پژوهش‌های مهندسی صنایع در سیستم‌های تولید، 5(11): 189-173.
[18] Ferguson, M., Jayaraman, V. and Souza, G.C. (2007). “Note: An Application of the EOQ Model with Nonlinear Holding Cost to Inventory Management of Perishables.”, European Journal of Operational Research, Vol. 180, No. 1: 85-90.
[19] Ghasemi, N. and Afshar Nadjafi, B. (2013). “EOQ Models with Varying Holding Cost.”, Journal of Industrial Mathematics.
[20] San-José, L.A., Sicilia, J. and García-Laguna, J. (2015). “Analysis of an EOQ Inventory Model with Partial Backordering and Non-Linear Unit Holding Cost.”, Omega, Vol. 54: 47-57.
[21] Alfares, H.K. (2007). “Inventory Model with Stock-Level Dependent Demand Rate and Variable Holding Cost. “, International Journal of Production Economics, Vol. 108, No. 1: 59-65.
[22] Alfares, H.K. (2014). “Production-Inventory System with Finite Production Rate, Stockdependent Demand, and Variable Holding Cost.”, RAIRO–Operations Research, Vol. 48, No. 1: 35-150.
[23] Zhao, M. and Zhong, B. (2008). “Inventory Model with Stock-Level Dependent Demand Rate and Variable Holding Cost.”, Journal of Chongqing Institute of Technology (Natural Science), pp. 10–23.
[24] Pando, V., García-Laguna, J., San-José, L.A. and Sicilia, J.  (2012). “Maximizing Profits in an Inventory Model with Both Demand Rate and Holding Cost per Unit Time Dependent on the Stock Level.”, Computers & Industrial Engineering, Vol. 62, No. 2: 599-608.
[25] Pando, V., San-José, L.A., García-Laguna, J. and Sicilia, J. (2013). “An Economic Lot-Size Model with Non-Linear Holding Cost Hinging on Time and Quantity.”, International Journal of Production Economics, Vol. 145, No. 1: 294-303.
[26] Datta, T.K. (2013). “An Inventory Model with Price and Quality Dependent Demand Where Some Items Produced Are Defective.”, Advances in Operations Research.
[27] Kumar, M., Chauhan, A. and Kumar, R. (2013). “A Deterministic Inventory Model for Deteriorating Items with Price Dependent Demand and Time Varying Holding Cost under Trade Credit.”, International Journal of  Soft Computing and Engineering, pp. 21-23.
[28] Datta, T.K. and Paul, K. (2001). “An Inventory System with Stock-Dependent, Price-Sensitive Demand Rate.”, Production Planning & Control, Vol. 12, No. 1: 13-20.
[29] Weng, Z.K. (1995). “Modeling Quantity Discounts under General Price-Sensitive Demand Functions: Optimal Policies and Relationships.”, European Journal of Operational Research, Vol. 86, No. 2: 300-314.
[30] Burwell, T.H., Dave, D.S., Fitzpatrick, K.E. and Roy, M.R. (1997). “Economic lot size model for price-dependent demand under quantity and freight discounts.”, International Journal of Production Economics, Vol. 48, No. 2: 141-155.
[31] Chang, H.C. (2013). “A Note on an Economic Lot Size Model for Price-Dependent Demand under Quantity and Freight Discounts.”, International Journal of Production Economics, Vol. 144, No. 1: 75-79.
[32] Wee, H.M. (1999). “Deteriorating inventory model with quantity discount, pricing and partial backordering.”, International Journal of Production Economics, Vol. 59, No. 1: 511-518.
[33] Goh, M. and Sharafali, M. (2002). “Price-Dependent Inventory Models with Discount Offers at Random Times.”, Production and Operations Management, Vol. 11, No. 2: 39-56.
[34] San José, L.A. and García-Laguna, J. (2003). “An EOQ Model with Backorders and All-Units Discounts.”, TOP, Vol. 11, No. 2: 53-74.
[35] San José, L.A. and García-Laguna, J. (2009). “Optimal Policy for an Inventory System with Backlogging and All-Units Discounts: Application to the Composite Lot Size Model.”, European Journal of Operational Research, Vol. 192, No. 3: 23-80.
[36] Papachristos, S. and Skouri, K. (2003). “An inventory model with deteriorating items, quantity discount, pricing and time-dependent partial backlogging.”, International Journal of Production Economics, Vol. 83, No. 3: 247-256.
[37] Yang, P.C. (2004). “Pricing Strategy for Deteriorating Items Using Quantity Discount When Demand Is Price Sensitive.”, European Journal of Operational Research, Vol. 157, No. 2: 389-397.
[38] Transchel, S. and Minner, S. (2008). “Coordinated lot-sizing and dynamic pricing under a supplier all-units quantity discount.”, BuR-Business Research, Vol. 1, No. 1: 125-141.
[39] Ouyang, L.Y., Wu, K.S. and Yang, C.T.  (2008). “Retailer's ordering policy for noninstantaneous deteriorating items with quantity discount, stock-dependent demand and stochastic backorder rate.”, Journal of the Chinese Institute of Industrial Engineers, Vol. 25, No. 1: 62-72.
[40] Shi, J., Zhang, G., and Lai, K.K. (2012). “Optimal Ordering and Pricing Policy with Supplier Quantity Discounts and Price-Dependent Stochastic Demand.”, Optimization, Vol. 61, No. 2: 15-62.
[41] Shah, N.H. (2012). “Ordering policy for inventory management when demand is stockdependent and a temporary price discount is linked to order quantity.”, Revista Investigación Operacional, Vol. 33, No. 3: 233-244.
[42] Tripathi, R.P. and Tomar, S.S. (2015). “Optimal order policy for deteriorating items with timedependent demand in response to temporary price discount linked to order quantiy. “, International Journal of Mathematical Analysis, Vol. 9, No. 23: 1095-1109.
[43] Alfares, H.K. (2015). “Maximum-Profit Inventory Model with Stock-Dependent Demand, Time-Dependent Holding Cost,and All-Units Quantity Discounts.”, Mathematical Modelling and Analysis, Vol. 20, No. 6: 15-36.
]44[ سیف برقی، مهدی؛ توکلیان، فرناز، سرمست حسن کیاده، زهرا، (1397). «یک مدل موجودی تک دوره یی با ظرفیت تولید محدود در شرایط عدم قطعیت بودجه و هزینه کمبود»، نشریه مهندسی صنایع و مدیریت شریف، دوره 1-34، شماره 2/2، 9-19.
]45[ جبل عاملی، محمدسعید؛ محمدی، عمران؛ نوری، مجتبی. (1398). «طراحی زنجیره تأمین پایدار با در نظر گرفتن عدم قطعیت در ریسک مربوط به تأمین‌کنندگان»، پژوهش‌های مهندسی صنایع در سیستم‌های تولید، 7(14): 107-125.
]46[ خاکزار بفروئی، مرتضی؛ ذبیحی، فاطمه. (1397). «قیمت‌گذاری و تعیین زمان بهینه کاهش قیمت فروش کالای فاسدشدنی برای افزایش نرخ تقاضا»، مدیریت تولید و عملیات، دوره 9(پیاپی 17)، شماره2، 193-79 .
[47] Zhang, J.; Liu, G.; Zhang, Q., Bai, Z., (2015). “Coordinating A Supply Chain For Deteriorating Item With A Revenue Sharing And Cooperative Investment Contract”. Omega, 56: 37-49
]48[ شریفی، عبداله، آقایی، عبداله، رحمانی، دنیا. (1398). «شبیه‌سازی مسئله کنترل موجودی محصولات فسادپذیر با هزینه سفارش‌دهی متغیر به کمک پویایی سیستم»، پژوهش‌های مهندسی صنایع در سیستم‌های تولید، 7(14): 45-29.
]49[ فاطمی قمی، محمدتقی. (1393). برنامه‌ریزی و کنترل تولید و موجودی‌ها، چاپ نهم، انتشارات امیرکبیر.