A Model for Cloud-Based Closed-Loop Supply Chain Network Design

Document Type : Research Paper

Authors

1 1. Master student of logistics and supply chain, Industrial Engineering Group, Department of Industrial Engineering, K. N. Toosi University of Technology, Tehran, Iran

2 2. Associate professor, Industrial Engineering Group, Department of Industrial Engineering, K. N. Toosi University of Technology, Tehran, Iran

10.22084/ier.2025.31115.2207

Abstract

Intense competition in today’s market and rapid changes in the business environment have encouraged organizations to adopt modern technologies. In recent years, cloud computing, as an Internet-based approach, has attracted significant attention. In this study, a closed-loop cloud supply chain model is examined as a novel solution for optimizing supply chain performance compared to the traditional model. In the cloud-based model, products are delivered directly from the producer to the customer, eliminating intermediary centers; computational resources are also shared and managed through a pay-per-use structure. Moreover, three service layers-SaaS, PaaS, and IaaS-and three types of cloud-private, public, and hybrid-are simultaneously incorporated, which can be considered another innovation of this research. For modeling, implementation, and solution, the GAMS software is employed. Furthermore, to evaluate model performance under different conditions, sensitivity analysis is conducted regarding the increase in the number of service types, providers, and customers, and the results are compared in both traditional and cloud-based cases. Overall, the findings demonstrate that the adoption of cloud computing technology, due to features such as scalability and pay-per-use, can provide an effective and cost-efficient approach for managing supply chains under high-demand conditions. Thus, the cloud supply chain model not only achieves superior performance in responding to customer needs but also shows significant cost advantages compared to the traditional model.

Keywords

Main Subjects


  • کامکار، الهه و رحمانی، دنیا و روغنیان, عماد، (1398). «ارائه‌ی مدلی برای قیمت گذاری کالاهای فاسد شدنی غیرآنی با درنظر گرفتن سن، قیمت و تقاضا به‌عنوان متغیر و رضایت مراکز زنجیره‌تأمین به‌عنوان تابع هدف».نشریه پژوهش‌های مهندسی صنایع در سیستم‌های تولید, 7(15), 355-375.‎

10.22084/ier.2020.20220.1901  / https://doi.org

  • افشارپور، بهنام و جعفری، عزیزاله، (1403). «طراحی شبکۀ زنجیره‌تأمین حلقه‌بسته دو‌کانالۀ سبز و تاب‌آور تحت ریسک اختلال با درنظر گرفتن انعطاف‌پذیری شبکه».نشریه پژوهش های مهندسی صنایع در سیستم‌های تولید, 12(25)، 99-119.‎

10.22084/ier.2025.30588.2197 / https://doi.org

  • Dehmer, J., & Niemann, J. (2018). “Value chain management through cloud-based platforms'”. Procedia-social and behavioral sciences, 238, 177-181.

https://doi.org/10.1016/j.sbspro.2018.03.021

  • Ivanov, D., Dolgui, A., & Sokolov, B. (2022). “Cloud supply chain: Integrating Industry 4.0 and digital platforms in the “Supply Chain-as-a-Service'”. Transportation Research Part E: Logistics and Transportation Review160, 102676.

https://doi.org/10.1016/j.tre.2022.102676

  • Amini, M., & Jahanbakhsh Javid, N. (2023). “A multi-perspective framework established on diffusion of innovation (DOI) theory and technology, organization and environment (TOE) framework toward supply chain management system based on cloud computing technology for small and medium enterprises'”.  International Journal of Information Technology and Innovation Adoption, 11, 1217-1234.

 https://ssrn.com/abstract=4340207

  • Aich, M., Sengupta, D., & Pasam, V. R. “The Future of Supply Chain Automation: How AI and Cloud Integration Are Transforming Logistics'”. 

https://doi.org/10.36948/ijfmr.2025.v07i02.38601

  • Kumari, P., & Singh, S. K. (2025). “Eco-Friendly IoT Networks: Combining Green Cloud Solutions and Design '”. 
  • Stefanovic, N., Radenkovic, M., Bogdanovic, Z., Gaborovic, A. (2025). “Adaptive Cloud-Based Big Data Analytics Model for Sustainable Supply Chain Management'”. Sustainability17(1), 354.

http://dx.doi.org/10.3390/su17010354

  • Tan, Y., Gu, L., Xu, S. and Li, M., (2024). “Supply Chain Inventory Management from the Perspective of “Cloud Supply Chain”—A Data Driven Approach'”. Mathematics12(4), p.573.

https://doi.org/10.3390/math12040573

  • Jede, A. (2023). “Towards Inter-organizational Decision Support in Supply Chains through Cloud-based Discrete Event Simulation: A Conceptual Business Model and Elements of a Research Agenda'”. Anwendungen und Konzepte der Wirtschaftsinformatik, (17), 16-16.
  • Gammelgaard, B., & Nowicka, K. (2024). “Next generation supply chain management: the impact of cloud computing'”. Journal of Enterprise Information Management37(4), 1140-1160.

https://doi.org/10.1108/jeim-09-2022-0317

  • Liu, S., Han, W., Zhang, Z., & Chan, F. T. (2024). “An analysis of performance, pricing, and coordination in a supply chain with cloud services: The impact of data security'”. Computers & Industrial Engineering192, 110237.

https://doi.org/10.1016/j.cie.2024.110237

  • Jiang, M., Lin, X., & Ren, H. (2016). “Research on synergetic pricing strategy of cloud-closed loop supply chains'”. Adv Model Anal A, 59, 30-46.
  • Aghamohammadzadeh, E., & Fatahi Valilai, O. (2020). “A novel cloud manufacturing service composition platform enabled by Blockchain technology'”. International Journal of Production Research, 58(17), 5280-5298.

https://doi.org/10.1080/00207543.2020.1715507

  • Shahab, E., Kazemisaboor, A., Khaleghparast, S., & Fatahi Valilai, O. (2023). “A production bounce-back approach in the Cloud manufacturing network: case study of COVID-19 pandemic'”. International Journal of Management Science and Engineering Management, 18(4), 305-317.

https://doi.org/10.1080/17509653.2022.2112781

  • Aghamohammadzadeh, E., Malek, M., & Valilai, O. F. (2020). “A novel model for optimisation of logistics and manufacturing operation service composition in Cloud manufacturing system focusing on cloud-entropy'”. International Journal of Production Research, 58(7), 1987-2015.

https://doi.org/10.1080/00207543.2019.1640406

  • Delaram, J., & Valilai, O. F. (2018). “A mathematical model for task scheduling in cloud manufacturing systems focusing on global logistics'”. Procedia manufacturing, 17, 387-394.

https://doi.org/10.1016/j.promfg.2018.10.061

  • Akbaripour, H., Houshmand, M., Van Woensel, T., & Mutlu, N. (2018). “Cloud manufacturing service selection optimization and scheduling with transportation considerations: mixed-integer programming models'”. The International Journal of Advanced Manufacturing Technology, 95, 43-70.

https://doi.org/10.1007/s00170-017-1167-3

  • Shirvani, M. H. (2018, July). “Web service composition in multi-cloud environment: a bi-objective genetic optimization algorithm'”. In 2018 innovations in intelligent systems and applications (INISTA)(pp. 1-6). IEEE.

https://doi.org/10.1109/inista.2018.8466267

  • Farzai, S., Shirvani, M. H., & Rabbani, M. (2020). “Multi-objective communication-aware optimization for virtual machine placement in cloud datacenters'”. Sustainable Computing: Informatics and Systems, 28, 100374.

https://doi.org/10.1016/j.suscom.2020.100374

  • Saeedi, P., & Hosseini Shirvani, M. (2021). “An improved thermodynamic simulated annealing-based approach for resource-skewness-aware and power-efficient virtual machine consolidation in cloud datacenters'”. soft computing, 25, 5233-5260.

https://doi.org/10.1007/s00500-020-05523-1

  • حاجی‌پور، وحید و رهبرجو، محمد، (1398). «طراحی شبکه زنجیره‌تأمین با بهره گیری از فناوری رایانش ابری».پژوهش‌های مهندسی صنایع در سیستم‌های تولید. 7(14)، ص 123-141.‎

10.22084/ier.2019.16231.1763/ https://doi.org

  • Ivanov, D., Dolgui, A., & Sokolov, B. (2022). “Cloud supply chain: Integrating Industry 4.0 and digital platforms in the “Supply Chain-as-a-Service”. Transportation Research Part E: Logistics and Transportation Review'”, 160, 102676.

https://doi.org/10.1016/j.tre.2022.102676

  • Wang, H., Yin, Y. and Wang, X., (2024). “RETRACTED: The design for supply chain management of intelligent logistics system using cloud computing and the internet of things'”. Expert Systems41(5), p.e13271.

https://doi.org/10.1111/exsy.13271

  • Haval, A. M. (2025). “Deploying cloud computing and data warehousing to optimize supply chain management and retail analytics'”. In Applications of Mathematics in Science and Technology(pp. 810-816).

https://doi.org/10.1201/9781003606659-156

  • Taghipour, M., Soofi, M. E., Mahboobi, M., & Abdi, J. (2020). “Application of cloud computing in system management in order to control the process'”. Management, 3(3), 34-55.

http://dx.doi.org/10.31058/j.mana.2020.33003

  • Ageron, B., Bentahar, O., & Gunasekaran, A. (2020). “Digital supply chain: challenges and future directions'”. In Supply chain forum: An international journal(Vol. 21, No. 3, pp. 133-138). Taylor & Francis.

https://doi.org/10.1080/16258312.2020.1816361

  • Lu, X., Xie, Y., Wang, J., & Yao, S. (2020). “Patent labeling and cooperation in a cloud service supply chain'”. IEEE Access, 8, 74326-74338.

https://doi.org/10.1109/access.2020.2988041

  • Jiang, A. (2023, April). “Design of Supply Chain Intelligent Control System Based on Cloud Computing Virtual Reality Technology. In 2023 4th International Conference on Computer Engineering and Application (ICCEA) '”(pp. 452-455). IEEE.

http://dx.doi.org/10.47893/IJSSAN.2023.1227

  • Nahhas, A., Haertel, C., Daase, C., Volk, M., Ramesohl, A., Steigerwald, H., ... & Turowski, K. (2023). “On the integration of google cloud and SAP HANA for adaptive supply chain in retailing'”. Procedia Computer Science, 217: 1857-1866. https://doi.org/10.1016/j.procs.2022.12.386