Sustainable Cross-Dock Selection Decision Making with a Development of a New Framework Based on Machine Learning and Single-Valued Neutrosophic Set

Document Type : Research Paper

Authors

1 Ph.D. Student Industrial Engineering, Department of Industrial Engineering, Faculty of Engineering and Technology, Shahed University, Tehran, Iran

2 Professor, Department of Industrial Engineering, Faculty of Engineering and Technology, Shahed University, Tehran, Iran

10.22084/ier.2025.30115.2185

Abstract

Cross-docking is a logistics strategy used to collect, sort, and optimally distribute various products from suppliers to customers. Identifying key criteria for the development and location selection of cross-docks is a crucial topic in logistics network management. Choosing a cross-dock location involves both technical and managerial considerations. Cross-docks play a significant role in the supply chain by facilitating the rapid movement of goods from suppliers to customers. The purpose of this research is to provide an integrated multi-criteria decision-making model for cross-dock evaluation and selection. This study employs an integrated approach combining dimensionality reduction methods and multi-criteria decision-making based on a single-valued Neutrosophic set. To reduce the dimension of the decision matrix and determine the weight of the criteria, we introduced a new method based on the Uniform Manifold Approximation and Projection (UMAP) method and correlation coefficient. Additionally, a TODIM method, developed based on the chi-square distance in the single-valued Neutrosophic environment, was used to rank cross-docks. Through a literature review, we identified 18 criteria in 6 main categories, including sustainability and energy criteria for cross-docks. The results demonstrate the effectiveness of the proposed approach in selecting cross-docks, considering both quantitative and qualitative criteria.

Keywords

Main Subjects


  • Stephan, K., N. Boysen, and J. Cross-docking, (2011). Control, 22(1): p. 129-137. https://doi.org/10.1007/s00187-011-0124-9.
  • Boysen, N. and M. Fliedner, (2010). Cross dock scheduling: Classification, literature review and research agenda. Omega, 38(6): p. 413-422. https://doi.org/10.1016/j.omega.2009.10.008.
  • Bartholdi, J. J. and K. R. Gue, ( 2004). The best shape for a crossdock. Transportation science, 38(2): 235-244. https://doi.org/10.1287/trsc.1030.0077.
  • Mousavi, S. M., R. Tavakkoli-Moghaddam, and F. Jolai, (2013). A possibilistic programming approach for the location problem of multiple cross-docks and vehicle routing scheduling under uncertainty. Engineering Optimization, 45(10): 1223-1249. https://doi.org/10.1080/0305215X.2012.729053.
  • Rajabzadeh, M. and S. Mousavi, (2023). A new interval-valued fuzzy optimization model for truck scheduling in a multi-door cross-docking system by considering transshipment and flexible dock doors extra cost. Iranian Journal of Fuzzy Systems, 20(6): p. 63-84. https://doi.org/10.22111/ijfs.2023.41416.7203.
  • Rajabzadeh, M., S.M. Mousavi, and F. Azimi, (2024). A new gray optimization model for disposing or re-commercializing unsold goods in reverse logistics networks with a cross-docking center. Kybernetes, https://doi.org/10.1108/K-12-2022-1637.
  • عظیمی، ف.، س.م. موسوی، م. رجب‌زاده، (2019). یک مدل برنامه‌ریزی خاکستری برای اسقاط یا تجاری‌سازی مجدد کالاها در عملیات لجستیک معکوس با درنظر گرفتن انبار متقاطع. نشریه پژوهش‌های مهندسی صنایع در سیستمهای تولید. 7(14)163-177 : https://doi.org/10.22084/ier.2019.19811.1881.
  • رجب‌زاده، م.، موسوی، س.م.، (2023). یک مدل برنامه‌ریزی امکانی دوهدفه برای زمان‌بندی کامیون در یک سیستم انبار متقاطع با درهای منعطف با درنظر گرفتن زمان حمل‌ونقل درون انبار. نشریه پژوهش‌های مهندسی صنایع در سیستمهای تولید. 10(21): 119-133. https://doi.org/10.22084/ier.2023.27388.2115.
  • EVCİOĞLU, H.E. and M. KABAK, (2023). Supplier selection in supply chain network using MCDM methods. Sigma Journal of Engineering and Natural Sciences, 41(1): p. 1-16. https://doi.org/10.14744/sigma.2023.00001.
  • Jayaraman, V. and A. Ross, (2003). A simulated annealing methodology to distribution network design and management. European Journal of Operational Research, 144(3): p. 629-645. https://doi.org/10.1016/S0377-2217(02)00153-4.
  • Mousavi, S.M. and B. Vahdani, (2016). Cross-docking location selection in distribution systems: a new intuitionistic fuzzy hierarchical decision model. International Journal of computational intelligence Systems, 9(1): p. 91-109. https://doi.org/10.1080/18756891.2016.1144156.
  • Mousavi, S.M., (2019). A new interval-valued hesitant fuzzy pairwise comparison–compromise solution methodology: an application to cross-docking location planning. Neural Computing and Applications, 31: p. 5159-5173. https://doi.org/10.1007/s00521-018-3355-y.
  • Mousavi, S.M., et al., (2019). A new decision model for cross-docking center location in logistics networks under interval-valued intuitionistic fuzzy uncertainty. Transport, 34(1): 30-40. https://doi.org/10.3846/transport.2019.7442.
  • Nong, T. N.-M., (2022). A hybrid model for distribution center location selection. The Asian Journal of Shipping and Logistics, 38(1): 40-49. https://doi.org/10.1016/j.ajsl.2021.10.003.
  • Puška, A., A. Štilić, and Ž. Stević, (2023). A Comprehensive Decision Framework for Selecting Distribution Center Locations: A Hybrid Improved Fuzzy SWARA and Fuzzy CRADIS Approach. Computation, 11(4): 73. https://doi.org/10.3390/computation11040073.
  • Agrebi, M. and M. Abed, (2021). Decision-making from multiple uncertain experts: case of distribution center location selection. Soft Computing, 25(6): 4525-4544. https://doi.org/10.1007/s00500-020-05461-y.
  • Ak, M.F. and A. Derya, (2021). Selection of humanitarian supply chain warehouse location: A case study based on the MCDM methodology. Avrupa Bilim ve Teknoloji Dergisi, (22): 400-409. https://doi.org/10.31590/ejosat.849896.
  • Kieu, P.T., et al., (2021). A spherical fuzzy analytic hierarchy process (SF-AHP) and combined compromise solution (CoCoSo) algorithm in distribution center location selection: A case study in agricultural supply chain. Axioms, 10(2): p. 53. https://doi.org/10.3390/axioms10020053.
  • Karaşan, A. and C. Kahraman, (2019). A novel intuitionistic fuzzy DEMATEL–ANP–TOPSIS integrated methodology for freight village location selection. Journal of Intelligent & Fuzzy Systems, 36(2): p. 1335-1352. https://doi.org/10.3233/JIFS-17169.
  • Stević, Ž., et al., (2020). Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Computers & industrial engineering, 140: p. 106231. https://doi.org/10.1016/j.cie.2019.106231.
  • Beheshtinia, M. A., et al., (2022). Evaluating and ranking digital stores’ suppliers using TOPKOR method. International Journal of Engineering, 35(11): p. 2155-2163. https://doi.org/10.5829/ije.2022.35.11b.10.
  • Mukhametzyanov, I., (2021). Specific character of objective methods for determining weights of criteria in MCDM problems: Entropy, CRITIC and SD. Decision Making: Applications in Management and Engineering, 4(2): 76-105. https://doi.org/10.31181/dmame210402076i.
  • Wang, T.-C. and H.-D. Lee, (2009). Developing a fuzzy TOPSIS approach based on subjective weights and objective weights. Expert systems with applications, 36(5): 8980-8985. https://doi.org/10.1016/j.eswa.2008.11.035.
  • Şahin, M., (2021). Location selection by multi-criteria decision-making methods based on objective and subjective weightings. Knowledge and Information Systems, 63(8): 1991-2021. https://doi.org/10.1007/s10115-021-01588-y.
  • Song, C., Z. Xu, and J. Hou, (2021). An improved TODIM method based on the hesitant fuzzy psychological distance measure. International Journal of Machine Learning and Cybernetics, 12(4): p. 973-985. https://doi.org/10.1007/s13042-020-01215-2.
  • Luo, M., G. Zhang, and L. Wu, (2022). A novel distance between single valued neutrosophic sets and its application in pattern recognition. Soft Computing, 26(21): 11129-11137. https://doi.org/10.1007/s00500-022-07407-y.
  • Karabašević, D., et al., (2020). A novel extension of the TOPSIS method adapted for the use of single-valued neutrosophic sets and hamming distance for e-commerce development strategies selection. Symmetry, 12(8): p. 1263. https://doi.org/10.3390/sym12081263.
  • Ali, M., Z. Hussain, and M.-S. Yang, (2022). Hausdorff distance and similarity measures for single-valued neutrosophic sets with application in multi-criteria decision making. Electronics, 12(1): p. 201. https://doi.org/10.3390/electronics12010201.
  • Ren, H., S. Xiao, and H. Zhou, (2019). A chi-square distance-based similarity measure of single-valued neutrosophic set and applications. Infinite Study. http://dx.doi.org/10.15837/ijccc.2019.1.3430.
  • Gomes, L. and M. Lima, (1991). TODIMI: Basics and application to multicriteria ranking. Comput. Decis. Sci, 16(3-4): 1-16. https://fcds.cs.put.poznan.pl/FCDS/Old/1991.htm.
  • Irvanizam, I., et al., (2020). An Extended Fuzzy TODIM Approach for MultipleAttribute DecisionMaking with DualConnection Numbers. Advances in Fuzzy Systems, 1: p. 6190149. https://doi.org/10.1155/2020/6190149.
  • Lin, M., H. Wang, and Z. Xu, (2020). TODIM-based multi-criteria decision-making method with hesitant fuzzy linguistic term sets. Artificial Intelligence Review, 53: p. 3647-3671. https://doi.org/10.1007/s10462-019-09774-9.
  • Deng, X. and S. Qu, (2020). Cross-docking center location selection based on interval multi-granularity multicriteria group decision-making. Symmetry, 12(9): p. 1564. https://doi.org/10.3390/sym12091564.
  • Okatan, B.S., I. Peker, and B. Birdogan, (2019). An Integrated DEMATEL-ANP-VIKOR Approach for Food Distribution Center Site Selection: A Case Study of Georgia. Journal of Management Marketing and Logistics, 6(1): 10-20. https://doi.org/10.17261/Pressacademia.2019.1030.
  • Durak, İ., et al., (2017). Warehouse site selection in retail sector: application AHP (Analytical Hierarchy Process) and VIKOR methods. International Journal of Business and Management Invention (IJBMI), 6(12): 65-73. https://www.ijbmi.org/papers/Vol(6)12/Version-2/H0612026573.pdf.
  • Muerza, V., et al., (2024). Selection of an international distribution center location: A comparison between stand-alone ANP and DEMATEL-ANP applications. Research in Transportation Business & Management, 56: p. 101135. https://doi.org/10.1016/j.rtbm.2024.101135.
  • Wang, J., et al., (2024). Optimizing Cross-Dock Terminal Location Selection: A Multi-Step Approach Based on CI-DEA–IDOCRIW–MABAC for Enhanced Supply Chain Efficiency—A Case Study. Mathematics, 12(5): p. 736. https://doi.org/10.3390/math12050736.
  • Quynh, M.P., et al., (2020). Distribution center location selection using a novel multi criteria decision-making approach under interval neutrosophic complex sets: Infinite Study. http://dx.doi.org/10.5267/j.dsl.2020.2.001.
  • Wang, H., et al., (2010). Single valued neutrosophic sets. Infinite study. https://fs.unm.edu/SingleValuedNeutrosophicSets.pdf.
  • Gobinath, V., et al., (2025). Applications of Neutroscopic Sets in Science, the Humanities, and Education, in Data-Driven Modelling with Fuzzy Sets. CRC Press. 1-14. https://doi.org/10.1201/9781003487104.
  • Kara, K., et al., (2024). A single-valued neutrosophic-based methodology for selecting warehouse management software in sustainable logistics systems. Engineering applications of artificial intelligence, 129: 107626. https://doi.org/10.1016/j.engappai.2023.107626.
  • Kazimieras Zavadskas, E., R. Baušys, and M. Lazauskas, (2015). Sustainable assessment of alternative sites for the construction of a waste incineration plant by applying WASPAS method with single-valued neutrosophic set. Sustainability, 7(12): 15923-15936. https://doi.org/10.3390/su71215792.
  • Kotsiantis, S.B., I.D. Zaharakis, and P.E. Pintelas, (2006). Machine learning: a review of classification and combining techniques. Artificial Intelligence Review, 26: p. 159-190. https://doi.org/10.1007/s10462-007-9052-3.
  • Abdi, H. and L.J. Williams, (2010). Principal component analysis. Wiley interdisciplinary reviews: computational statistics, 2(4): 433-459. https://doi.org/10.1002/wics.101.
  • Mulla, F.R. and A.K. Gupta, (2022). A review paper on dimensionality reduction techniques. Journal of Pharmaceutical Negative Results: 1263-1272. https://doi.org/10.47750/pnr.2022.13.S03.198.
  • Trozzi, F., X. Wang, and P. Tao, (2021). UMAP as a dimensionality reduction tool for molecular dynamics simulations of biomacromolecules: A comparison study. The Journal of Physical Chemistry B, 125(19): 5022-5034. https://doi.org/10.1021/acs.jpcb.1c02081.
  • McInnes, L., J. Healy, and J. Melville, (2018). Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv: 1802.03426, https://doi.org/10.48550/arXiv.1802.03426.
  • Krishnan, A.R., et al., (2021). A modified CRITIC method to estimate the objective weights of decision criteria. Symmetry, 13(6): 973. https://doi.org/10.3390/sym13060973.
  • Becht, E., et al., (2019). Dimensionality reduction for visualizing single-cell data using UMAP. Nature biotechnology, 37(1): 38-44. https://doi.org/10.1038/nbt.4314.
  • Elshabshery, A. and M. Fattouh, (2021). On some Information Measures of Single–Valued Neutrosophic Sets and their Applications in MCDM Problems. J. Eng. Res. Technol, 10(5): p. 406-415. https://doi.org/10.17577/IJERTV10IS050160.
  • Goyal, R.K., et al., (2022). Obtaining Crisp Priorities for Triangular and Trapezoidal Fuzzy Judgments. Syst. Sci. Eng., 41(1): p. 157-170. http://dx.doi.org/10.32604/csse.2022.018962.
  • Zhang, C., et al., (2023). Performance evaluation of technological service platform: A rough Z-number-based BWM-TODIM method. Expert Systems with Applications, 230: 120665. https://doi.org/10.1016/j.eswa.2023.120665.
  • Kahneman, D., (1979). Prospect theory: An analysis of decisions under risk. Econometrica, 47: p. 278. https://doi.org/10.2307/1914185.
  • Lourenzutti, R. and R.A. Krohling, (2014) The Hellinger distance in Multicriteria Decision Making: An illustration to the TOPSIS and TODIM methods. Expert Systems with Applications, 41(9): 4414-4421. https://doi.org/10.1016/j.eswa.2014.01.015.
  • Chang, J., et al., (2021). A probabilistic linguistic TODIM method considering cumulative probability-based Hellinger distance and its application in waste mobile phone recycling. Applied Intelligence, 51: p. 6072-6087. https://doi.org/10.1007/s10489-021-02185-w.
  • Hussain, Z., S. Abbas, and M.-S. Yang, (2022). Distances and similarity measures of q-rung orthopair fuzzy sets based on the Hausdorff metric with the construction of orthopair fuzzy TODIM. Symmetry, 14(11): 2467. https://doi.org/10.3390/sym14112467.
  • Perlibakas, V., (2004). Distance measures for PCA-based face recognition. Pattern recognition letters, 25(6): p. 711-724. https://doi.org/10.1016/j.patrec.2004.01.011.
  • Ye, J., (2013). Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment. International Journal of General Systems, 42(4): 386-394. https://doi.org/10.1080/03081079.2012.761609.
  • Lu, Z., Y. Gao, and W. Zhao, (2020). A TODIM-based approach for environmental impact assessment of pumped hydro energy storage plant. Journal of Cleaner Production, 248: 119265. https://doi.org/10.1016/j.jclepro.2019.119265.