Presentation of a Mathematical Model for Optimizing the Production Scheduling of Lubricant Products

Document Type : Research Paper

Authors

1 Master of Industrial Engineering, Department of Socio-Economic Systems, Faculty of Industrial Engineering, Tarbiat Modares University, Tehran, Iran

2 Associate Professor, Department of Socio-Economic Systems, Faculty of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, Iran

3 Associate Professor, Department of Systems and Productivity Management, Faculty of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, Iran

10.22084/ier.2025.29548.2172

Abstract

Nowadays, production planning and scheduling have become the core of production management in manufacturing systems, as they lead to greater profitability and stabilization of daily output. In some manufacturing industries, the production process is continuous and operates at high capacity. Therefore, making optimal decisions for sustainable production and maximizing company profit is essential. The problem of production planning and scheduling in continuous manufacturing systems that produce various products, considering operational constraints for different products to meet customer demand, is one of the complex yet important issues in manufacturing industries—particularly in the production of lubricant products. In this study, considering the structure of lubricant production, a model is developed and optimized for production scheduling. The goal is to optimize scheduling and provide an execution sequence for the production plan, while taking into account tank inventory levels and capacity constraints. The validity of the proposed model is verified using real data. The formulated mathematical model has been implemented in the GAMS optimization software, and the optimal solution(s) has been obtained within an acceptable runtime. The results demonstrate improvements in scheduling and indicate the applicability of the proposed model in real-world scenarios.

Keywords

Main Subjects


  • Su, L., Tang, L., Grossmann, I., & Huang, Y. (2022). Modeling and Optimization of Stochastic Scheduling for Refinery Processes.

https://egon.cheme.cmu.edu/Papers/Su_Modeling%20and%20Optimization%20for%20Refinery%20Scheduling.pdf

  • Al-Ahmari, A., Kaid, H., Li, Z., Wu, N., El-Tamimi, A-A., & Qiao, Y. (2022). A new MINLP continuous time formulation for scheduling optimization of oil refinery with unreliable CDUs. Mathematical Problems in Engineering, Article ID 1298495, 1-12. https://doi.org/10.1155/2022/1298495
  • قندی بیدگلی، سمیه، بنرودی، ریحانه، (1401). «مدل‌سازی ریاضی و حل مسأله زمان‌بندی جریان کارگاهی انعطاف‌پذیر با جریان‌های معکوس و محدودیت دسترسی به ماشین‌ها». نشریه پژوهش‌های مهندسی صنایع در سیستم‌های تولید، 10(21): 1-17.

https://doi.org/10.22084/ier.2023.25010.2048

  • Shao, F. (2021). The study of time representations for chemical production scheduling models. Msc Thesis, Queen's University,Canada. https://www.proquest.com/openview/aa2b0c98509536ba1bd9b6d1ffb6ada4
  • Alharkan, IM. (2005). Algorithms for sequencing and scheduling. Industrial Engineering Department, King Saud University, Riyadh, Saudi Arabia.
  • Persson, J. (1999). Production planning and scheduling in refinery industry. Department of Mathematics, Linkoeping University, Sweden.
  • Georgiadis, GP., Elekidis, AP., & Georgiadis, MC. (2019). Optimization-based scheduling for the process industries: from theory to real-life industrial applications. Processes, 7, 438. https://doi.org/10.3390/pr7070438
  • خاکساری، پریا، قندی بیدگلی، سمیه، (1402). «مدل‌سازی ریاضی و حل مسأله زمان‌بندی جریان کارگاهی بدون انتظار با درنظر گرفتن زمان آزادسازی و فعالیت‌های نگهداری و تعمیرات پیش‌گیرانه». نشریه پژوهش‌های مهندسی صنایع در سیستم‌های تولید، 11(23)، 39-55.

https://doi.org/10.22084/ier.2024.5564

  • Tao, Z., Liu, X., & Zeng, P. (2014). Study on hybrid flow shop scheduling problem with blocking based on GASA. The Open Automation and Control Systems Journal, 6(1), 5293-600. http://dx.doi.org/10.2174/1874444301406010593
  • Pessoa, R., Maciel, I., Moccellin, J., Pitombeira-Neto, A., & Prata, B. (2021). Hybrid flow shop scheduling problem with machine blocking, setup times and unrelated parallel machines per stage. Investigacion Operacional.
  • Wang, Y., Wang, Y., & Han, Y. (2023). A variant iterated greedy algorithm integrating multiple decoding rules for hybrid blocking flow shop scheduling problem. Mathematics, 11(11), 2453. https://doi.org/10.3390/math11112453
  • Dai, X., Zhao, L., Li, Z., Du, W., Zhong, W., He, R., & Qian F. (2021). A data-driven approach for crude oil scheduling optimization under product yield uncertainty. Chemical Engineering Science, 246, 116971.

https://doi.org/10.1016/j.ces.2021.116971

  • Yu, L., Wang, S., & Xu, Q. (2022). Optimal scheduling for simultaneous refinery manufacturing and multi oil-product pipeline distribution. Computers & Chemical Engineering, 157, 107613.

https://doi.org/10.1016/j.compchemeng.2021.107613

  • Moradi, S., MirHassani, SA., Hooshmand, F. (2019). Efficient decomposition-based algorithm to solve long-term pipeline scheduling problem. Petroleum science, 16, 1159-1175. https://doi.org/10.1007/s12182-019-00359-3
  • Yang, H., Bernal, DE., Franzoi, RE., Engineer, FG., Kwon, K., Lee, S., & Grossmann, IE. (2020). Integration of crude-oil scheduling and refinery planning by Lagrangean Decomposition. Computers & Chemical Engineering, 138, 106812. https://doi.org/10.1016/j.compchemeng.2020.106812
  • Su, L., Bernal, DE., Grossmann, IE., & Tang, L. (2023). Modeling for integrated refinery planning with crude-oil scheduling. Chemical Engineering Research and Design, 192, 141-57. https://doi.org/10.1016/j.cherd.2023.02.008
  • Khor, CS., Varvarezos, D. (2017). Petroleum refinery optimization. Optimization and Engineering, 18(4), 943-989. https://link.springer.com/article/10.1007/s11081-016-9338-x
  • Jia, Z., & Ierapetritou, M. (2004). Efficient short-term scheduling of refinery operations based on a continuous time formulation. Computers & Chemical Engineering, 28(6-7), 1001-1019. https://doi.org/10.1016/j.compchemeng.2003.09.007