A Green Supply Chain Model Integrating Carbon Emission Costs in Transportation and Storage Using Heterogeneous Vehicles

Document Type : Research Paper

Authors

1 Associate Professor of Industrial Engineering, Department of Industrial Engineering, Faculty of Engineering, Yazd University, Yazd, Iran.

2 PhD Candidate in Industrial Engineering, Department of Industrial Engineering, Faculty of Engineering, Yazd University, Yazd, Iran.

Abstract

Amid growing environmental concerns and stringent regulatory requirements, Green Supply Chain Management (GSCM) has emerged as an essential strategic approach for organizations. This study introduces an advanced optimization model that incorporates carbon emission costs in both transportation and product storage, utilizing heterogeneous vehicle fleets. The proposed model integrates inventory and transportation decisions while considering both environmental and economic impacts, with the objective of optimizing energy consumption and resource allocation across the supply chain. This research formulates and evaluates a multi-product, multi-period optimization framework within the context of GSCM, specifically aimed at minimizing carbon emissions. Initially developed using Mixed-Integer Non-Linear Programming (MINLP), the model is subsequently linearized into a Mixed-Integer Linear Programming (MILP) formulation. It includes various cost factors, such as carbon emission costs in transportation and product storage. The findings demonstrate that increasing the carbon tax rate significantly reduces carbon emissions but concurrently elevates overall supply chain costs. While extending the planning horizon increases overall and transportation costs, inventory holding costs and carbon emissions from logistics and storage remain relatively stable. By presenting a comprehensive optimization framework, this study provides supply chain managers with a robust decision-making tool to mitigate carbon emissions and promote both environmental and economic sustainability.

Keywords

Main Subjects


  • Srivastava, S. K. (2007). Green supply‐chain management: a state‐of‐the‐art literature review. International journal of management reviews9(1), 53-80. https://doi.org/10.1111/j.1468-2370.2007.00202.x
  • Zhu, Q., Sarkis, J., & Lai, K. H. (2007). Green supply chain management: pressures, practices and performance within the Chinese automobile industry. Journal of cleaner production15(11-12), 1041-1052. https://doi.org/10.1016/j.jclepro.2006.05.021
  • Xie, D., Qiu, Y., & Huang, J. (2024). Multi-objective optimization for green logistics planning and operations management: From economic to environmental perspective. Computers & Industrial Engineering189, 109988. https://doi.org/10.1016/j.cie.2024.109988
  • Ramudhin, A., Chaabane, A., & Paquet, M. (2010). Carbon market sensitive sustainable supply chain network design. International Journal of Management Science and Engineering Management, 5(1), 30-38. https://doi.org/10.1080/17509653.2010.10671088
  • Neto, J. Q. F., Bloemhof-Ruwaard, J. M., van Nunen, J. A., & van Heck, E. (2008). Designing and evaluating sustainable logistics networks. International journal of production economics, 111(2), 195-208. https://doi.org/10.1016/j.ijpe.2006.10.014
  • Hasani, A., Mokhtari, H., & Fattahi, M. (2021). A multi-objective optimization approach for green and resilient supply chain network design: a real-life case study. Journal of cleaner production278, 123199. https://doi.org/10.1016/j.jclepro.2020.123199
  • Firouzi, F., & Jadidi, O. (2021). Multi-objective model for supplier selection and order allocation problem with fuzzy parameters. Expert Systems with Applications180, 115129. https://doi.org/10.1016/j.eswa.2021.115129
  • Huang, Y., Wang, K., Zhang, T., & Pang, C. (2016). Green supply chain coordination with greenhouse gases emissions management: a game-theoretic approach. Journal of Cleaner Production112, 2004-2014. https://doi.org/10.1016/j.jclepro.2015.05.137
  • Paksoy, T., Bektaş, T., & Özceylan, E. (2011). Operational and environmental performance measures in a multi-product closed-loop supply chain. Transportation Research Part E: Logistics and Transportation Review47(4),532-546. https://doi.org/10.1016/j.tre.2010.12.001
  • Kumari, M., De, P. K., Narang, P., & Shah, N. H. (2023). Integrated optimization of inventory, replenishment, and vehicle routing for a sustainable supply chain utilizing a novel hybrid algorithm with carbon emission regulation. Expert Systems with Applications, 220, 119667. https://doi.org/10.1016/j.eswa.2023.119667
  • Ardliana, T., Pujawan, I. N., & Siswanto, N. (2022). A mixed-integer linear programming model for multiechelon and multimodal supply chain system considering carbon emission. Cogent Engineering, 9(1), 2044589. https://doi.org/10.1080/23311916.2022.2044589
  • Lu, Y., & Li, S. (2023). Green transportation model in logistics considering the carbon emissions costs based on improved grey wolf algorithm. Sustainability, 15(14), 11090. https://doi.org/10.3390/su151411090
  • Golpîra, H., & Javanmardan, A. (2022). Robust optimization of sustainable closed-loop supply chain considering carbon emission schemes. Sustainable Production and Consumption, 30, 640-656. https://doi.org/10.1016/j.spc.2021.12.028
  • Moghdani, R., Salimifard, K., Demir, E., & Benyettou, A. (2021). The green vehicle routing problem: A systematic literature review. Journal of Cleaner Production, 279, 123691. https://doi.org/10.1016/j.jclepro.2020.123691
  • Wangsa, I. D., Vanany, I., & Siswanto, N. (2023). A sustainable supply chain coordination model with an investment in green technology and electric equipment. International Journal of Systems Science: Operations & Logistics, 10(1), 2221078. https://doi.org/10.1080/23302674.2023.2221078
  • حمدی اصل, عبدالرضا, عموزادخلیلی, حسین, توکلی‌مقدم, رضا, & حاجی آقایی, مصطفی. (1400). «بهینه‌سازی چندهدفه در طراحی شبکه زنجیره‌تأمین خرما». نشریه پژوهش های مهندسی صنایع در سیستم های تولید, 9(19), 137-153. doi: 10.22084/ier.2022.26317.2091

- Hamdi Asl, A., Amozad Khalili, H., Tookli Moghaddam, R., & Haji Aghaei, M. (2022). Multi-objective Optimization in the Date Supply Chain Network Design. Journal of Industrial Engineering Research in Production Systems, 9(19), 137-153.

doi: 10.22084/ier.2022.26317.2091 (in persion)

 

  • عبداله زاده, سهراب, & عاصم فرزانه, زهرا. (1402). «مدل ریاضی برای بهبود عملکرد زنجیره‌تأمین سبز با استفاده از مفهوم همزیستی صنعتی». نشریه پژوهش های مهندسی صنایع در سیستم های تولید, 11(22), 97-109. doi: 10.22084/ier.2023.27680.2124

-Abdollazadeh, S., & Asem Farzaneh, Z. (2023). A Mathematical Model for Improving Green Supply Chain Performance Using the Concept of Industrial Symbiosis. Journal of Industrial Engineering Research in Production Systems, 11(22), 97-109. doi: 10.22084/ier.2023.27680.2124 (in persion)

  • Eydi, A., & Hashem Bagheney, S. (2024). Impact of carbon emissions regulation on producer and consumer transportation decisions in green supply chain design under uncertainty. Soft Computing, 1-23. https://doi.org/10.1007/s00500-024-09867-w
  • Derakhti, A., & Gonzalez, E. D. S. (2024). A bi-objective optimization approach for carbon capture and storage supply chain network combining with pricing policies: Economic and social aspects. Journal of Cleaner Production, 434, 139672. https://doi.org/10.1016/j.jclepro.2023.139672
  • Xu, Z., Pokharel, S., & Elomri, A. (2023). An eco-friendly closed-loop supply chain facing demand and carbon price uncertainty. Annals of Operations Research, 320(2), 1041-1067. https://doi.org/10.1007/s10479-021-04499-x
  • قهرمانی نهر, جاوید, قدرت نما, علی, ایزد بخش, حمید رضا, & توکلی مقدم, رضا. (1397). «طراحی یک شبکه زنجیره تأمین سبز چند هدفه چند محصولی و چند دوره ای با در نظر گرفتن تخفیف در شرایط عدم قطعیت». نشریه پژوهش های مهندسی صنایع در سیستم های تولید, 6(13), 119-137. https://doi.org/10.22084/ier.2017.8877.1421

- Qahremani Nahar, J., Ghodrati Nima, A., Eizadbakhsh, H. R., & Tookli Moghaddam, R. (2018). Design of multi-objective multi-product multi period green supply chain network with considering discount under uncertainty. Journal of Industrial Engineering Research in Production Systems, 6(13), 119-137. https://doi.org/10.22084/ier.2017.8877.1421 (in persion)

  • Seuring, S. (2013). A review of modeling approaches for sustainable supply chain management. Decision support systems, 54(4), 1513-1520. https://doi.org/10.1016/j.dss.2012.05.053
  • Fu, C., Liu, Y. Q., & Shan, M. (2023). Drivers of low-carbon practices in green supply chain management in construction industry: An empirical study in China. Journal of Cleaner Production, 428, 139497. https://doi.org/10.1016/j.jclepro.2023.139497
  • Benjaafar, S., Li, Y., & Daskin, M. (2012). Carbon footprint and the management of supply chains: Insights from simple models. IEEE transactions on automation science and engineering, 10(1), 99-116. https://doi.org/10.1109/TASE.2012.2203304
  • Tavana, M., Tohidi, H., Alimohammadi, M., & Lesansalmasi, R. (2021). A location-inventory-routing model for green supply chains with low-carbon emissions under uncertainty. Environmental science and pollution research, 28(36), 50636-50648. https://doi.org/10.1007/s11356-021-13815-8
  • Kanda, A., & Deshmukh, S. G. (2008). Supply chain coordination: perspectives, empirical studies and research directions. International journal of production Economics, 115(2), 316-335. https://doi.org/10.1016/j.ijpe.2008.05.011
  • Ubeda, S., Arcelus, F. J., & Faulin, J. (2011). Green logistics at Eroski: A case study. International Journal of Production Economics, 131(1), 44-51. https://doi.org/10.1016/j.ijpe.2010.04.041
  • Mirzapour Al-E-Hashem, S. M. J., & Rekik, Y. (2014). Multi-product multi-period Inventory Routing Problem with a transshipment option: A green approach. International Journal of Production Economics, 157, 80-88. https://doi.org/10.1016/j.ijpe.2013.09.005
  • Alamerew, Y. A., & Brissaud, D. (2020). Modelling reverse supply chain through system dynamics for realizing the transition towards the circular economy: A case study on electric vehicle batteries. Journal of Cleaner Production, 254, 120025. https://doi.org/10.1016/j.jclepro.2020.120025
  • Eslamipoor, R. (2023). An optimization model for green supply chain by regarding emission tax rate in incongruous vehicles. Modeling Earth Systems and Environment, 9(1), 227-238. https://doi.org/10.1007/s40808-022-01470-y
  • Zadek, H., & Schulz, R. (2010). Methods for the calculation of CO 2 emissions in logistics activities. In Advanced Manufacturing and Sustainable Logistics: 8th International Heinz Nixdorf Symposium, IHNS 2010, Paderborn, Germany, April 21-22, 2010. Proceedings (pp. 263-268). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-12494-5_24