A Mathematical Model for a Production Planning Problem Considering Reliability in an Automotive Parts Company

Document Type : Research Paper

Authors

1 . Ph.D. Technology Management, Department of Technology Management, Faculty of Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran

2 Professor, School of Industrial Engineering, College of Engineering, University of Tehran

3 Ph.D. Technology Transfer Management, Department of Technology Management, Faculty of Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran

4 M.A Industrial Management , Department of Industrial Management, Faculty of Management & Economy, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

A few studies have addressed the failure or reliability of machines regarding cell formation problems. The general assumption in cell formation is that most machines are 100% reliable; however, they are not in a practical situation. Machine failure can severely affect the system performance and cause a delay in the scheduled date. A cellular manufacturing system is a philosophy among group technology ones, which is controlled by dividing a large system to multiple smaller sub-systems and facilitate manufacturing system management. This study presents a mathematical programming model for production planning problems in industrial units with reliability that prepares the conditions to utilize alternative routes for parts, which minimizes the lost costs along with maintenance costs. Since the considered problem is an NP-hard one, a genetic algorithm is used to solve the model. The presented mathematical model minimizes system costs, and the costs related to intra- and inter-cellular movements and maintenance by minimizing the costs of machine failures.

Keywords

Main Subjects


  •  

    • Bouaziz, H., D., Bardou., M., Berghida, S., Chouali, A., Lemouari. (2023). "A novel hybrid multi-objective algorithm to solve the generalized cubic cell formation problem". Computers & Operations Research, 150: p. 106069. https://doi.org/10.1016/j.cor.2022.106069.
    • Liu, C., J. Wang., J.Y.-T. Leung. (2016). "Worker assignment and production planning with learning and forgetting in manufacturing cells by hybrid bacteria foraging algorithm". Computers & Industrial Engineering, 96: p. 162-179. https://doi.org/10.1016/j.cie.2016.03.020.
    • Goli, A., E.B. Tirkolaee, N.S. Aydın. (2021). "Fuzzy integrated cell formation and production scheduling considering automated guided vehicles and human factors". IEEE Transactions on Fuzzy Systems, 29(12): p. 3686-3695. doi: 10.1109/TFUZZ.2021.3053838.
    • Chaudhuri, B., R. Jana, P.K. Dan. (2020). "A review on the multi-objective cell formation problem in cellular manufacturing systems". International Journal of Manufacturing Technology and Management, 34(2): p. 188-209. https://doi.org/10.1504/IJMTM.2020.106207.
    • Batsyn, M.V., E.K. Batsyna, I.S. Bychkov, (2020). "NP-completeness of cell formation problem with grouping efficacy objective". International Journal of Production Research, 58(20): p. 6159-6169. https://doi.org/10.1080/00207543.2019.1668072.
    • Rafiee, M., V., Kayvanfar. A., Mohammadi. F., "Werner. (2022). "A robust optimization approach for a cellular manufacturing system considering skill-leveled operators and multi-functional machines". Applied Mathematical Modelling, 107: p. 379-397. https://doi.org/10.1016/j.apm.2022.02.028.
    • خیرخواه، ا.س. قجری، ع.، (1397). "یکپارچه‌سازی طراحی سیستم‌های تولید سلولی و برنامه‌ریزی تولید با نگرش تولید متوازن"، مهندسی صنایع و مدیریت شریف، دوره 1-34، شماره 1/2، ص53-64. doi:10.24200/J65.2018.20057.
    • Dekkers, R. (2018). Group technology: Amalgamation with design of organisational structures. International Journal of Production Economics, 200: p. 262-277. https://doi.org/10.1016/j.ijpe.2018.02.018.
    • Karoum, B., Y.B. Elbenani, (2017). "A clonal selection algorithm for the generalized cell formation problem considering machine reliability and alternative routings". Production Engineering, 11(4): p. 545-556. https://doi.org/10.1007/s11740-017-0751-6.
    • کرباسیان، م. قندهاری، م. عابدی، س.، (1389). "بهینه‌سازی نگهداری و تعمیرات پیش‌گیرانه مبتنی‌بر قابلیت اطمینان سیستم برمبنای هزینه و قابلیت اطمینان وابسته به مکان اجزاء سیستم"، علمی پژوهشی مدیریت تولید وعملیات، دوره 1-1، ص 19-30.

    https://jpom.ui.ac.ir/article_19760.html.

    • رفیعی، م. محمدی طلب، ع.، (1395). "ارائه یک مدل ریاضی با رویکرد بهینه‌سازی استوار برای طراحی سیستم تولید پویا با درنظر گرفتن ماشین‌آلات چندکاره"، پژوهش‌های مهندسی صنایع در سیستم‌های تولید، سال چهارم شماره نهم، ص 281-295. doi: 10.22084/ier.2017.1827.
    • کریمی، ب. نیاکی، س.ت.ا. حاله، ح. نادری، ب.، (1396). "مدل‌سازی قابلیت اطمینان وسایل نقلیه هدایت‌شونده خودکاردر سیستم‌های تولید سلولی: حل با استفاده از الگوریتم جستجوی فاخته با مرتب‌سازی جواب‌های نامغلوب"، پژوهش‌های مهندسی صنایع در سیستم‌های تولید، سال پنجم شماره یازدهم، ص 131-147. doi: 10.22084/ier.2017.13881.1627.
    • Farughi, H., S. Mostafayi, A. Afrasiabi, (2019). "Bi-objective robust optimization model for configuring cellular manufacturing system with variable machine reliability and parts demand: A real case study". Journal of Industrial Engineering and Management Studies, 6(2): p. 120-146. https://doi.org/10.22116/jiems.2019.93028.
    • Amirghodsi, S., Bonyadi Naeini, A. & Makui, A. (2022). "Dual model for selecting technology and technology transfer method using a combination of the Best-Worst Method (BWM) and goal programing". Scientia Iranica, 29(5): p. 2628-2646. doi:  10.24200/SCI.2020.53925.3511.
    • Dahooie, J.H., Qorbani, A.R. & Daim, T. (2021). "Providing a framework for selecting the appropriate method of technology acquisition considering uncertainty in hierarchical group decision-making: Case study: Interactive television technology". Technological Forecasting and Social Change, 168, 120760.         https://doi.org/10.1016/j.techfore.2021.120760   .
    • Sadat Khorasgani, S.M., M. Ghaffari, (2018). "Developing a cellular manufacturing model considering the alternative routes, tool assignment, and machine reliability". Journal of Industrial Engineering International, 14(3): p. 627-636.   https://doi.org/10.1007/s40092-017-0239-1.
    • Xu, J.; Wang, X.; Liu, F.; (2021). "Government subsidies, R&D investment and innovation performance: Analysis from pharmaceutical sector in China". Technology Analysis & Strategic Management, 33(5): p. 535-553. https://doi.org/10.1080/09537325.2020.1830055.
    • Latifian, M.; Keramati, M.A.; Tavakkoli-Moghaddam, R.; (2022). "A Bi-objective model of research and development in battery manufacturing industry to improve customer satisfaction". International Journal of Engineering, 35(11): p. 2077-2091. doi: 10.5829/IJE.2022.35.11B.03.
    • Kazemi, M., A., Sadegheih., M.M., Lotfi, M.A., Vahdat. (2022). "Developing a bi-objective schedule for an online cellular manufacturing system in an MTO environment". Soft Computing,. 26(2): p. 807-828. https://doi.org/10.1007/s00500-021-06402-z.
    • Arabahmadi, R., Mohammadi, M., Samizadeh, M., Rabbani, M., Gharibi, M.(2023). "Facility location optimization for technical inspection centers using multi-objective mathematical modeling considering uncertainty". Journal of Soft Computing and Decision Analytics, Volume 1, Issue 1 (2023) 181-208. https://doi.org/10.31181/jscda11202314.
    • Mirjalili, S., A., Safaa Sadiq, H., Faris. (2020). "Genetic algorithm: Theory, literature review, and application in image reconstruction". Nature-inspired optimizers: p. 69-85. https://doi.org/10.1007/978-3-030-12127-3_5
    • شهابی، ف. شاهبندرزاده، ح. بالویی جامخانه، ه.، (1402). "بهینه‌سازی یک سیستم تولید سلولی پویا با درنظر گرفتن خرابی ماشین‌آلات، همراه با پایش توالی دوره‌های عملیات"، مدیریت صنعتی، دوره 15، شماره 3، ص 507-532. doi:10.22059/IMJ.2023.356073.1008035.