A model for pricing of non-instantaneous perishable products considering age, price and demand as variable factors and satisfaction of chain centers

Document Type : Research Paper

Authors

1 K. N. Toosi Unversity of Technology, Tehran, Iran

2 Faculty member

Abstract

Pricing is one of the most important decisions a company or organization can take, because the reflector price is the amount of value that a product has and the customer is willing to pay. This issue will become even more important for perishable products. Therefore, in this paper, we will examine the pricing of non-instantaneous perishable products, as demand is a nonlinear function of the price and age of the product. Also, the price is a function of the product's age. The model is a bi-objective model, which, in addition to maximizing profit, attempts to maximize this issue, considering the satisfaction of chain centers and customers as a goal. Genetic Algorithm and Vibration Damping Optimization has been used to solve the problem. Results show the validation of the model and the performance of the developed algorithms.

Keywords


]1[ کریمی ناصر، راستی برزکی مرتضی. (1397). "رویکرد نظریه بازی برای قیمت‌گذاری و تعیین سطح تبلیغات و سطح خدمت در یک زنجیره تأمین دارای کانال توزیع دوگانه: تصمیم‌گیری متمرکز". نشریه پژوهش­های مهندسی صنایع در سیستم­های تولید، 13(6): 179-193.
[2] Goyal, S.K., Giri, B.C. (2001). “Recent trends in modeling of deteriorating inventory”. European Journal of Operational Research, 134, 1-16.
]3[ عیدی، آسیه. (1395). قیمت­گذاری پویا محصولات فاسدشدنی غیرآنی با در نظر گرفتن یک دوره فروش ویژه در زنجیره تأمین. پایان‌نامه کارشناسی‌ارشد. دانشگاه پیام‌نور. مرکز تهران شمال. دانشکده مهندسی صنایع.
[4] Panda, S. & Saha, S. & Basu, M. (2009). “An EOQ model for perishable products with discounted selling price and stock dependent demand”. CEJOR. 17, PP. 31-53.
]5[ تیموری، ابراهیم و کاظمی، محمد مهدی. (1394). "توسعه مدل قیمت‌گذاری کالاهای زوال‌پذیر با نرخ زوال ثابت با در نظر گرفتن جایگزینی کالاهای فاسد شده". نشریه تخصصی مهندسی صنایع. دوره 49، شماره 1، 1-9.
]6[ پورعلی­خوانی، حامد و کیمیاگری، علی­محمد و کیوانلو، محسن. (1392). "قیمت‌گذاری و برنامه­ریزی تولید برای یک تولیدکننده با اقلام فاسدشدنی وابسته به زمان"، تحقیق در عملیات. دوره 10. شماره 3، 11-23.
[7] Zhang, J., Wang, Y., Lu, L. & Tang, W. (2015). “Optimal dynamic pricing and replenishment cycle for non-instantaneous deterioration items with inventory- level- dependent demand”. Journal Production Economics. 170, 136-145.
[8] Schlooser, R. (2015). “Dynamics pricing and advertising of perishable products with inventory holding costs”. Journal of Economic Dynamics & Control. 57, 163-181
[9] Rabbani, M., Zia, N.P. and Rafiei, H., (2016). “Joint optimal dynamic pricing and replenishment policies for items with simultaneous quality and physical quantity deterioration”. Applied Mathematics and Computation, 287, 149-160.
[10] Dye, C. Y. & Yang, C. T. (2016). “Optimal dynamic pricing and preservation technology investment for deteriorating products with reference price effects”. Omega. 62, 52-67.
[11] Fan, T., Xu, C. and Tao, F., (2020). “Dynamic pricing and replenishment policy for fresh produce”. Computers & Industrial Engineering, 139, p.106127.
[12] Tashakkor, N., Mirmohammadi, S.H. and Iranpoor, M., (2018). “Joint optimization of dynamic pricing and replenishment cycle considering variable non-instantaneous deterioration and stock-dependent demand”. Computers & Industrial Engineering, 123, 232-241.
[13] Soni, H.N., Suthar, D.N., (2019). “Pricing and inventory decisions for non-instantaneous deteriorating items with price and promotional effort stochastic demand’. Journal of Control and Decision, 6(3), 191-215.
[14] Vaghela, C.R. and Shah, N.H., (2020). “Dynamic Pricing, Advertisement Investment and Replenishment Model for Deteriorating Items”. In Optimization and Inventory Management (pp. 81-92). Springer, Singapore.
[15] Li, G., He, X., Zhou, J. and Wu, H., (2019). “Pricing, replenishment and preservation technology investment decisions for non-instantaneous deteriorating items”. Omega, 84, 114-126.
[16] Barzinpour, F. and Taki, P., (2018). “A dual-channel network design model in a green supply chain considering pricing and transportation mode choice”. Journal of Intelligent Manufacturing, 29(7), 1465-1483.
]17[ مهدیزاده، اسماعیل و توکلی مقدم، رضا. (1388). بهینه‌سازی یک مسأله زمانبندی ماشین­های موازی به کمک میرایی ارتعاشات. دومین کنفرانس بین المللی تحقیق در عملیات.  
[18] Hajipour, V., Farahani, R.Z. and Fattahi, P., (2016). “Bi-objective vibration damping optimization for congested location–pricing problem”. Computers & Operations Research, 70, 87-100.
[19] Tavakkoli-Moghaddam, R., Vazifeh-Noshafagh, S., Taleizadeh, A.A., Hajipour, V. and Mahmoudi, A., (2017). “Pricing and location decisions in multi-objective facility location problem with M/M/m/k queuing systems”. Engineering Optimization, 49(1), pp.136-160.
[20] Moghaddam, R.T., (2018). “A multi-objective vibration damping meta-heuristic algorithm for multi-objective p-robust supply chain problem with travel time”. Journal of Industrial and Systems Engineering, 11(Special issue: 14th International Industrial Engineering Conference), 176-189.
[21] Adenzo, B. & Lorenzo, S. & Palacio, A. (2016). “Effects of dynamic pricing of perishable products on revenue and waste”. Applied Mathemetical Modeling. 45, 148-164.
[22] Tekin, P. & Erol, R. (2017). “A new dynamic pricing model for the effective sustainability of perishable product life cycle”. Journal sustainability. 28, 211-233.
[23] Yu, J. & Gan, M. & Ni, SH. & Chen, D. (2018). “Multi-objective models and real case study for dual-channel FAP supply chain network design with fuzzy information”. Journal Springer, 29, 389-403.
]24[ پسران حاجی عباس، مرجان. (1395). طراحی یک مدل مکانیابی- تخصیص شبکه توزیع دارو با تأکید بر زمان دسترسی. پایان نامه کارشناسی ارشد. دانشگاه صنعتی خواجه نصیر الدین طوسی. دانشکده مهندسی صنایع.
[25] Holland, J. (1975). Adaptation in Natural and Artificial Systems. University of michigan press. Ann Arbor.
[26] Atabaki, M. S., Mohammadi, M., & Naderi, B. (2017). Hybrid genetic algorithm and invasive weed optimization via priority-based encoding for location-allocation decisions in a three-stage supply chain. Asia-Pacific Journal of Operational Research, 34(02), 1750008.