Sustainable Energy Planning Based on Stochastic P-Robust

Document Type : Research Paper

Authors

1 Industrial engineering, Iran University of Science and Technology

2 Industrial engineering, Tehran University

Abstract

In this paper, a new model for energy planning problem is proposed based on environmental and social aspects of sustainability. Power plants capacity expansion is modeled in a way that the water consumption cost is minimized and the greenhouse gases emission rate is controlled. Moreover, social acceptance for the capacity expansion plan must ensure the government’s social acceptance level, in the planning periods. Different scenarios generated to cover the variety of uncertainties, based on stochastic P-robust approach. In this approach, the expected cost is minimized and the regret value for each scenario would not be more than P, so the solution is P-robust. The proposed model is applied for a case study from Iran energy sector. The results indicate that a slight increase in expected cost value leads to considerable regret reduction.

Keywords


[1] Pohekar, SD., Ramachandran M., (2004). Application of multi-criteria decision making to sustainable energy planning - A review. Renew Sustain Energy Rev; 8: 365–381. doi:10.1016/j.rser.2003.12.007.
[2] Kazemi, A., Mehregan, MR., Ganjavi, HS., Hosseinzadeh, M., (2012). Energy Resource Allocation in Iran: A Fuzzy Multi-Objective Analysis. Procedia - Soc Behav Sci; 41:334–41. doi:10.1016/j.sbspro.2012.04.038.
[3] Prasad, RD., Bansal, RC., Raturi, A., (2014). Multi-faceted energy planning: A review. Renew Sustain Energy Rev; 38: 686–699. doi:10.1016/j.rser.2014.07.021.
[4] Huang, Z., Yu, H., Peng, Z., Zhao, M., (2015). Methods and tools for community energy planning : A review. Renew Sustain Energy Rev; 42: 1335–1348. doi:10.1016/j.rser.2014.11.042.
[5] Cai, YP., Huang, GH., Tan, Q., Yang, ZF., (2009). Planning of community-scale renewable energy management systems in a mixed stochastic and fuzzy environment. Renew Energy 2009; 34: 1833–1847. doi:10.1016/j.renene.2008.11.024.
[6] Li, YP., Huang, GH., (2012). Electric-power systems planning and greenhouse-gas emission management under uncertainty. Energy Convers Manag; 57: 173–182. doi:10.1016/j.enconman.2011.12.018.
[7] Hopwood, B., Mellor, M., O’Brein, G., (2005). Sustainable Development: Mapping Different Approaches. Susutainable Dev; 13: 38–52. doi:10.1016/B978-1-85617-672-9.10008-0.
[8] Fathipour, F., Saidi-Mehrabad, M., (2018). A multi-objective energy planning considering sustainable development by a TOPSIS-based augmented e-constraint. J Renew Sustain Energy; 10. doi:10.1063/1.5008545.
[9] Tsoutsos, T., Drandaki, M., Frantzeskaki, N., Iosifidis, E., Kiosses, I., (2009). Sustainable energy planning by using multi-criteria analysis application in the island of Crete. Energy Policy; 37: 1587–1600. doi:10.1016/j.enpol.2008.12.011.
[10]         Kaya, T., Kahraman, C., (2010). Multicriteria renewable energy planning using an integrated fuzzy VIKOR & amp; AHP methodology: The case of Istanbul. Energy; 35: 2517-2527.
 [11]        Kaya, T., Kahraman, C., (2011). Expert Systems with Applications Multicriteria decision making in energy planning using a modified fuzzy TOPSIS methodology. Expert Syst Appl; 38: 6577–6585. doi:10.1016/j.eswa.2010.11.081.
[12]         Montajabiha, M,. (2016). An Extended PROMETHE II Multi-Criteria Group Decision Making Technique Based on Intuitionistic Fuzzy Logic for Sustainable Energy Planning. Gr Decis Negot; 25: 221–244. doi:10.1007/s10726-015-9440-z.
[13]         Cayir Ervural, B., Zaim, S., Demirel, OF., Aydin, Z., Delen, D., (2018). An ANP and fuzzy TOPSIS-based SWOT analysis for Turkey’s energy planning. Renew Sustain Energy Rev; 82: 1538–1550. doi:10.1016/j.rser.2017.06.095.
[14]         Sadeghi, M., Mirshojaeian Hosseini, H., (2006). Energy supply planning in Iran by using fuzzy linear programming approach (regarding uncertainties of investment costs). Energy Policy; 34: 993–1003. doi:10.1016/j.enpol.2004.09.005.
[15]         Cai, YP., Huang, GH., Lin, QG., Nie, XH., Tan, Q., (2009). An optimization-model-based interactive decision support system for regional energy management systems planning under uncertainty. Expert Syst Appl; 36: 3470–3482. doi:10.1016/j.eswa.2008.02.036.
[16]         Koo, J., Han, K., Yoon, ES., (2011). Integration of CCS , emissions trading and volatilities of fuel prices into sustainable energy planning , and its robust optimization. Renew Sustain Energy Rev; 15: 665–672. doi:10.1016/j.rser.2010.07.050.
[17]         Dong, C., Huang, GH., Cai, YP., Liu, Y., (2013). Robust planning of energy management systems with environmental and constraint-conservative considerations under multiple uncertainties. Energy Convers Manag; 65: 471–486. doi:10.1016/j.enconman.2012.09.001.
[18]         Xie, YL., Huang, GH., Li, W., Ji, L., (2014) Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model-A case study of Jining City, China. Appl Energy; 136: 150–167. doi:10.1016/j.apenergy.2014.09.015.
[19]         Famiglietti, JS., (2014). The global groundwater crisis. Nat Clim Chang; 4: 945–8. doi:10.1038/nclimate2425.
[20]         Islam, S., Susskind, L., (2015). Understanding the water crisis in Africa and the Middle East: How can science inform policy and practice? Bull At Sci; 71: 39–49. doi:10.1177/0096340215571906.
[21]         Gorjian, S., Ghobadian, B., (2015). Solar desalination: A sustainable solution to water crisis in Iran. Renew Sustain Energy Rev; 48: 571–584. doi:10.1016/j.rser.2015.04.009.
[22]         Kardooni, R., Yusoff, SB., Kari, FB., (2016). Renewable energy technology acceptance in Peninsular Malaysia. Energy Policy;88: 1–10. doi:10.1016/j.enpol.2015.10.005.
[23]         Upham, P., Oltra, C., Boso, À., (2015). Towards a cross-paradigmatic framework of the social acceptance of energy systems. Energy Res Soc Sci; 8: 100–112. doi:10.1016/j.erss.2015.05.003.
[24]         Sahinidis, N V., (2004). Optimization under uncertainty: State-of-the-art and opportunities. Comput Chem Eng; 28: 971–983. doi:10.1016/j.compchemeng.2003.09.017.
[25]         Snyder, L V., Daskin, MS., (2006). Stochastic p-robust location problems. IIE Trans (Institute Ind Eng ; 38: 971–985. doi:10.1080/07408170500469113.
[26]         Shakouri, G. H, Aliakbarisani, S., (2016). At what valuation of sustainability can we abandon fossil fuels? A comprehensive multistage decision support model for electricity planning. Energy; 107: 60–77. doi:10.1016/j.energy.2016.03.124.