A decomposition and cutting plane approach to the integrated scheduling and distribution problem in the supply chain

Document Type : Research Paper

Authors

1 Alborz campus, University of Tehran

2 Department of Industrial Engineering, University of Tehran

Abstract

Integration of supply chain decisions has become one of the most attractive and practical topics for researchers. The scheduling of the production and distribution of customer orders are two most important activities of these decisions, which both of them affect the supply chain performance in timely delivery of orders and reduce costs. This study addresses the problem of integrating these two decisions. The problem has been investigated from a multi-agent point of view. A mixed integer programming model is proposed to the problem. Regarding the problem structure, first, the problem is decomposed into two problems, and then a cutting plane approach is used to solve it. The computational results indicate the proper performance of the proposed algorithm.

Keywords

Main Subjects


[1]    Chandra, P., Fisher, M.L., (1994). “Coordination of production and distribution planning”, European Journal of Operational Research, 72(3): 503-517.
[2]    Chen, Z.L., Vairaktarakis, G.L., (2005). “Integrated scheduling of production and distribution operations”, Management Science, 51(4): 614-628.
[3]    Lei, L., Liu, S., Ruszczynski, A., Park, S., (2006). “On the integrated production, inventory, and distribution routing problem”, IIE Transactions, 38(11): 955-970.
[4]    Chen, Z.L., (2010). “Integrated production and outbound distribution scheduling: review and extensions”, Operations research, 58(1): 130-148.
[5]    Bard, J.F., Nananukul, N., (2009). “The integrated production inventory distribution routing problem”, Journal of Scheduling, 12(3): 257-280.
[6]    Cheng, T.C.E., Kahlbacher, H.G., (1993). “Scheduling with Delivery and Earliness Penalties”, Asia Pacific Journal of Operational Research, 10(2): 145-152.
[7]    Li, K., Zhou, C., Leung, J.Y.T., Ma, Y., (2016). “Integrated production and delivery with single machine and mutiple vehicles”, Expert Systems with Applications, 57: 12-20.
[8]    Baker, K.R., Cole Smith, J., (2003). “A Multiple-Criterion Model for Machine Scheduling”, Journal of Scheduling, 6(1): 7-16.
[9]    Agnetis, A., Mirchandani, P.B., Pacciarelli, D., Pacifici, A., (2004). “Scheduling Problems with Two Competing Agents”, Operations Research, 52(2): 229-242.
[10] Agnetis, A., Aloulou, M.A., Fu, L.L., (2014). “Coordination of production and interstage batch delivery with outsourced distribution”, European Journal of Operational Research, 238(1): 130-142.
[11] Pundoor, G., Chen, Z.L., (2005). “Scheduling a production-distribution system to optimize the tradeoff between delivery tardiness and distribution cost”, Naval Research Logistics, (NRL) 52(6): 571-589.
[12] Hall, N.G., Potts, C.N., (2003). “Supply chain scheduling: batching and delivery”, Operations Research, 51(4): 584-566.
[13] Wang, H., Lee, C.Y., (2005). “Production and transport logistics scheduling with two transport mode choices”, Naval Research Logistics (NRL) 52(8): 796-809.
[14] Li, C.L., Vairaktarakis, G., (2007). “Coordinating production and distribution of jobs with bundling operations”, IIE transactions 39(2): 203-215.
[15] Herrmann, J.W., Lee, C.Y., (1993). “On scheduling to minimize earliness-tardiness and batch delivery costs with acommon due date”, European Journal of Operational Research, 70(3): 272-288.
[16] Lee, C.Y., Chen, Z.L., (2001). “Machine scheduling with transportation considerations”, Journal of scheduling, 4(1): 3-24.
[17] Geismar, H.N., Laporte, G., Lei, L., Sriskandarajah, C., (2008). “The integrated production and transportation scheduling problem for a product with a short lifespan”, INFORMS Journal on Computing, 20(1): 21-33.
[18] Li, C.L., Vairaktarakis, G., Lee, C.Y., (2005). “Machine scheduling with deliveries to multiple customer locations”, European Journal of Operational Research, 164(1): 39-51.
[19] Sarmiento, A.M., Nagi, R., (1999). “A review of integrated analysis of production--distribution systems, IIE transactions, 31(11): 1061-1074.
[20] Mula, J., Peidro, D., D´ıaz-Madro~nero, M., Vicens, E., (2010). “Mathematical programming models for supply chain production and transport planning”, European Journal of Operational Research, 204(3): 377-390.
[21] Fahimnia, B., Farahani, R.Z., Marian, R., Luong, L., (2013). “A review and critique on integrated production-distribution planning models and techniques”, Journal of Manufacturing Systems, 32(1): 1-19.
[22] Cheng, T.C.E., Gordon, V.S., Kovalyov, M.Y., (1996). “Single machine scheduling with batch deliveries”, European Journal of Operational Research, 94(2): 277-283.
[23] Wang, G., Cheng, T.C.E., (2000). “Parallel machine scheduling with batch delivery costs”, International Journal of Production Economics, 68(2): 177-183.
[24] Selvarajah, E., Steiner, G., Zhang, R., (2013). “Single machine batch scheduling with release times and delivery costs”, Journal of Scheduling, 16(1): 69-79.
[25]  Yin, Y., Cheng, T., Wu, C.C., Cheng, S.R., (2013). “Single-machine common due-date scheduling with batch delivery costs and resource-dependent processing times”, International Journal of Production Research, 51(17): 5083-5099.
[26] Rostami, M., Kheirandish, O., Ansari, N., (2015). “Minimizing maximum tardiness and delivery costs with batch delivery and job release times”, Applied Mathematical Modelling, 39(16): 4909-4927.
[27] Joo, C.M., Kim, B.S., (2017). “Rule-based meta-heuristics for integrated scheduling of unrelated parallel machines, batches, and heterogeneous delivery trucks”, Applied Soft Computing, 53: 457-476.
[28] Perez-Gonzalez, P., Framinan, J.M., (2014). “A common framework and taxonomy for multicriteria scheduling problems with interfering and competing jobs: Multi-agent scheduling problems”, European Journal of Operational Research, 235(1): 1-16
[29] Itayef, A.B., Loukil, T., Teghem, J., (2009). “Rescheduling a permutation flowshop problems under the arrival a new set of jobs”, 2009 International Conference on Computers & Industrial Engineering, IEEE, 188-192.
[30]  Agnetis, A., De Pascale, G., Pacciarelli, D., (2009). “A lagrangian approach to single-machine scheduling problems with two competing agents”, Journal of Scheduling, 12(4): 401-415.
[31] Qi, T., Hua-Ping, C., Bing, D., Xiao-lin, L., (2011). “Two-agent scheduling on a single batch processing machine with non-identical job sizes. In 2011 2nd International Conference on Artificial Intelligence”, Management Science and Electronic Commerce (AIMSEC), IEEE: 7431-7435.
[32] Yin, Y., Wang, Y., Cheng, T.C.E., Wang, D.J., Wu, C.C., (2016). “Two-agent single-machine scheduling to minimize the batch delivery cost”, Computers and Industrial Engineering, 92: 16-30
[33] Lin. H., Wu, C.C., (2017). “Particle swarm optimization and opposite-based particle swarm optimization for two-agent multi-facility customer order scheduling with ready times”, Applied Soft Computing, 52: 877-884.
[34] Yin, Y., Wu, W.H., Cheng, T., Wu, C.C., Wu, W.H., (2015). “A honey-bees optimization algorithm for a two-agent single-machine scheduling problem with ready times”, Applied Mathematical Modelling, 39(9): 2587-2601.
[35] Hooker, J.N., Ottosson, G., (2003). “Logic-based benders decomposition”, Mathematical Programming, 96(1): 33-60.
[36] Codato, G., Fischetti, M., (2006). “Combinatorial Benders' cuts for mixed-integer linear programming”, Operations Research, 54(4): 756-766.
[37] Naoum-Sawaya, J., Elhedhli, S., (2010). “A nested benders decomposition approach for telecommunication network planning”, Naval Research Logistics (NRL), 57(6): 519-539.
[38]  بهنامیان، جواد، فاطمی قمی، سیدمحمدتقی، (1392). "ارائه الگوریتم ترکیبی بر پایه بهینه‌سازی گروه ذرات و روش هایپرهیوریستیک برای زمانبندی کارخانه‌های توزیع شده با اتحاد مجازی"، نشریه پژوهش‌های مهندسی صنایع در سیستم‌های تولید، 1(1): 1-11.
[39]  خدابنده، مهدی، حجازی، سید رضا، راستی-برزکی، مرتضی، (1392). "یک الگوریتم ژنتیک برای مساله زمانبندی یکپارچه تولید و توزیع با در نظر گرفتن مسیریابی در زنجیره تامین"، نشریه پژوهش‌های مهندسی صنایع در سیستم‌های تولید: 1(2): 167-181.