ارائه یک الگوریتم رقابت استعماری ترکیبی برای زمان‌بندی یکپارچه تولید و توزیع با در نظر گرفتن مسیریابی وسایل نقلیه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی صنایع، دانشکده مهندسی، دانشگاه کردستان، سنندج، ایران

2 دانشیار گروه مهندسی صنایع، دانشکده مهندسی، دانشگاه کردستان، کردستان، ایران.

چکیده

در این مقاله، مسأله زمان‌بندی یکپارچه تولید و توزیع با در نظر گرفتن مسیریابی وسایل نقلیه بررسی می شود. یک کارخانه که چند خط تولید موازی در اختیار دارد، سفارش‌های مشتریان را دریافت می کند؛ پس از تولید محصولات سفارش داده شده، آن‌ها به صورت دسته‌ای بوسیله ناوگانی از وسایل نقلیه برای مشتریان ارسال می شوند. بر خلاف شیوه ارسال مستقیم سفارشات از کارخانه برای هر یک از مشتریان، ارسال دسته‌ای به علت استفاده حداکثری از ظرفیت وسایل حمل و نقل باعث کاهش هزینه‌های حمل می‌شود، اما ممکن است منجر به افزایش هزینه های نگه‌داری و دیرکرد شود. هدف، یافتن یک برنامه زمانی یکپارچه ی تولید و توزیع است به گونه ای که هزینه‌های آماده سازی، نگه‌داری، توزیع و دیرکرد حداقل شود. ابتدا، مسأله به صورت یک مدل برنامه-ریزی خطی عددصحیح مختلط مدله می شود. به دلیل NP-hard بودن آن، یک الگوریتم ترکیبی از الگوریتم رقابت استعماری و قواعد غلبه برای حل مسائل با ابعاد بزرگ ارائه می شود. به منظور ارزیابی عملکرد الگوریتم پیشنهادی، تعدادی مسأله نمونه تولید و حل می شوند. نتایج محاسباتی حاکی از آن است که الگوریتم عملکرد خوبی برای مسائل با ابعاد بزرگ دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A hybrid imperialist competitive algorithm for integrated scheduling of production and distribution with vehicle routing

نویسندگان [English]

  • Leyla Izadi 1
  • Fardin Ahmadizar 2
  • Jamal Arkat 2
1 Department of Industrial Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
2 Associate Professor, Department of Industrial Engineering,University of Kurdistan
چکیده [English]

In this paper, integrated scheduling of production and distribution with vehicle routing problem is considered. A manufacturer with parallel production lines receives customer orders; after producing them, they are then delivered to the customers in batches by a fleet of vehicles. Unlike a direct delivery of products from the manufacturer to each customer, batch delivery reduces the transportation costs because of the maximum utilization of the vehicle capacities, but it may increase the holding and tardiness costs. The objective is to find an integrated schedule of production and distribution so as to minimize the setup, holding, distribution and tardiness costs. The problem is first formulated as a mixed integer linear programming model. In view of its NP-hardness, a procedure by incorporating dominance properties with imperialist competitive algorithm is then proposed to solve large-sized problem instances. To evaluate the performance of the proposed algorithm, several instances are generated and solved. Computational results demonstrate that the algorithm has a good performance for large problems.

کلیدواژه‌ها [English]

  • Integrated scheduling
  • Vehicle routing
  • Batch delivery
  • Holding cost
  • Imperialist competitive algorithm
  • Dominance properties

[1]   Pinedo, M., (2015). Scheduling, Springer.

[2]   Hosseinzadeh, M., Sahraeian, R., (2017). “Solving a Multi-Agent Scheduling Problem in a Flow Shop Environment Considering Rejection and Deteriorating Jobs Using a Meta-Heuristic Algorithm”, Journal of Industrial Engineering Research in Production Systems, 5(10): 17-29.

[3]   Chang, Y.C., Li, V.C., Chiang, C.J., (2014). “An ant colony optimization heuristic for an integrated production and distribution scheduling problem”, Engineering Optimization, 46(4): 503-520.

[4]   Sarmiento, A.M., Nagi, R., (1999). “A Review of Integrated Analysis of Production–Distribution Systems”, IIE Transactions, 31(11): 1061-1074.

[5]   Cóccola, M.E., Zamarripa, M., Méndez, C.A., Espu˜na, A., (2013). “Toward integrated production and distribution management in multi-echelon”, Computers and Chemical Engineering 57: 78-94.

[6]   Hall, N.G., Potts, C.N., (2003). “Supply chain scheduling: Batching and delivery”, Operations Research, 51: 566-584.

[7]   Chen, H.K., Hsueh, C.F., Chang, M.S., (2008). “Production scheduling and vehicle routing with time windows for perishable food products”, Computers & Operations Research, 36: 2311-2319.

[8]   Chen, Z.L., (2010). “Integrated Production and Outbound Distribution Scheduling: Review and Extensions”, Operations Research 58(1): 130-148.

[9]   Garcia, J.M., Smith, K., Lozano, S., Guerrero, F., (2002). “A comparison of GRASP and an exact method for solving a production and delivery scheduling problem”, Advances in Soft Computing, Physica, (14): 431-447.

[10] Garcia, J.M., Lozano, S., Canca. D., (2004). “Coordinated scheduling of production and delivery from multiple plants”, Robotics and Computer-Integrated Manufacturing, 20 (3): 191-198.

[11] Chang, Y.C., Lee, C.Y., (2004). “Machine scheduling with job delivery coordination”, European Journal of Operational Research, 158 (2): 470-487.

[12] Chen, Z.L., Vairaktarakis, G.L., (2005). “Integrated scheduling of production and distribution operations”, Management Science, 51 (4): 614-628.

[13] Li, C.L., Vairaktarakis, G.L., (2007). “Coordinating production and distribution of jobs with bundling operations”, IIE Transactions, 39 (2): 203-215.

[14] Khodabandeh, M., Hejazi, S.R., Rasti-Barzoki, M., (2014). “A Genetic Algorithm for an Integrated Production and Distribution Scheduling Problem with VRP”, Journal of Industrial Engineering Research in Production Systems, 1(2): 167-181.

[15] Ullrich C.A., (2013). “Integrated machine scheduling and vehicle routing with time windows”, European Journal of Operational Research, 227: 152-165.

[16] Amorim, P., Belo-Filho, M.A.F., Toledo, F.M.B., Almeder, C., Almada-Lobo, B., (2013). “Lot sizing versus batching in the production and distribution planning of perishable goods”, International Journal of Production Economics, 146: 208-218.

[17] Chang, Y.C., Chang, K.H. Chang, T.K. (2013). “Applied column generation-based approach to solve supply chain scheduling problems”, International Journal of Production Research, 51 (13): 4070-4086.

[18] Chang, Y.C., Li, V.C., Chiang, C.J., (2014). “An ant colony optimization heuristic for an integrated production and distribution scheduling problem”, Engineering Optimization, 46(4): 503-520.

[19] Belo-Filho, M.A.F., Amorim, P., Almada-Lobo. (2015). “An adaptive large neighbor-hood search for the operational integrated production and distribution problem of perishable products”, International Journal of Production Research, 53 (20): 6040-6058.

[20] Li, K., Zhou, C., Leung, Y.T.J., Ma, Y., (2016). “Integrated production and delivery with single machine and multiple vehicles”, Expert Systems with Applications, 57: 12-20.

[21] Devapriya, P., Ferrell, W., Geismar, N., (2017). “Integrated Production and Distribution Scheduling with a Perishable Product”, European Journal of Operational Research, 259(3): 906-916.

[22] Chang, P.C., Chen, SH., Mani, V., (2009). “A hybrid genetic algorithm with dominance properties for single machine scheduling with dependent penalties”, Applied Mathematical Modelling, 33: 579-596.

[23] Chang, P.C., Chen, S.H., (2011). “Integrating dominance properties with genetic algorithms for parallel machine scheduling problems with setup times”, Applied Soft Computing, 11: 1263-1274.

[24] Ahmadizar, F., Hosseini, L., (2012). “Bi-criteria single machine scheduling with a time- dependent learning effect and release times”, Applied Mathematical Modelling, 36(62): 6203-6214.

[25] Ahmadizar, F., Amiri, Z., (2018). “Outsourcing and scheduling for a two-machine flow shop with release times”, Engineering Optimization, 50(3): 483-498.

[26] Atashpaz-Gargari, E., Lucas, C., (2007). “Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition”, IEEE Congress on Evolutionary Computation, singapore: 4661-4667.

[27] Atashpaz Gargari, E., Hashemzadeh, F., Rajabioun, R., Lucas, C., (2008). “Colonial competitive algorithm: A novel approach for PID controller design in MIMO distillation column process”, International Journal of Intelligent Computing and Cybernetics (IJICC), 1(3): 337-355.

[28] Behnamian, J., Zandieh, M., (2001). “A discrete colonial competitive algorithm for hybrid flowshop scheduling to minimize earliness and quadratic tardiness penalties”, Expert Systems with Applications, 38: 14490-14498.

[29] Ahmadizar, F., Farhadi, S., (2015). “Single-machine batch delivery scheduling with job release dates, due windows and earliness, tardiness, holding and delivery costs”, Computers &OperationsResearch, 53: 194-205.

[30] Hosseini, S.M., Al Khaled, A., (2014). “A survey on the Imperialist Competitive Algorithm meta-heuristic: Implementation in engineering domain and directions for future research”, Applied Soft Computing, 24: 1078-1094.

[31] Shokrollahpour, E., Zandieh, M., Dorri, B., (2011). “A novel imperialist competitive algorithm for bi-criteria scheduling of the assembly flowshop problem”, International Journal of Production Research, 49:3087-103.

Haase, K., Kimms, A., (2000). “Lot sizing and scheduling with sequence-dependent setup costs and times and efficient rescheduling opportunities”, International Journal of Production Economics, 66: 159-169.