مقایسه سه روش فراینگکاری برای کمیته نمودن زمان جریه در مسئله زمانبندی حریان کارگاهی

مختلط دوره‌ای با در نظر گرفتن اثر یادگیری

جواد بهنامیان۱، فاطمه دیباه۲

اطلاعات مقاله

تاريخ مقاله: ۱۳۹۵/۰۳/۲۱
پذیرش: ۱۳۹۵/۰۹/۲۶

کلمات کلیدی:
زمانبندی
حریان کارگاهی
مختلط
اثر یادگیری
الگوریتم فعالیکاری

خلاصه

زمانبندی حریان کارگاهی در صنایع که روند حرکت کارها بر روی ماشین‌های به صورت دوره‌ای می‌باشد، همچون صنایع که محصولاتی که فاسد شدن نظر صنایع غناپای و یا دارای طول عمر همانند مودا شیمیایی، رادیواکتوپی و غیره ساخته از همین زایدی برخوردار است. در این مسئله، با توجه به دلیل محدودیت‌های زمانی و با رقابت با سایر شرکت‌ها، مسئله کمک نمودن به زمان اجسام حریان کارگاهی مختلط دوره‌ای می‌باشد و اثر یادگیری اول‌اتر را در یک توییل مشاهده است. این پژوهش به نظر کارگاهی است. زمان جریه بر روی هر ماشین را با وجود اثر یادگیری به کمک چندین غلاف‌های کمک نمودن. برای این منظور در رویداد پژوهش، ابتدا تحقیقات پیشین در این جزوی مورد مطالعه قرار گرفت. سپس مدل ریاضی این مسئله توسط ما به دلیل آنکه ماهیت کمک نمودن زمان اجسام حریان در محیط توییل جریان کارگاهی مختلط دوره‌ای، جزء سیستم خود (NP-Hard) می‌باشد و برای حل این مسئله از روش‌هایی از جمله ترجمه شده، ترجمه سازی این برای یادگیری استفاده شد. تجربیات نشان می‌دهد که الگوریتم شبیه‌سازی ترجمه می‌تواند بر جمعیت به دلیل ساختار جمعیتی، به‌طور مداومی نسبت به دو الگوریتم دیگر کارایی بهتری دارد.

۱- مقدمه

مسئولیت جریان کارگاهی مختلط شامل جنگل‌زد و مارک دستی می‌باشد که به‌صورت جریانی فعالیت می‌نماید و در هر مرحله و مرکز ماشینی، ماشین‌های به‌صورت موازی قرار گرفته‌اند. این چندین ماشین‌های در هر مرحله نیز می‌توانند هر فعالیت باید سیستم کارگاهی مختلط در تعداد وسيعی از سیستم استفاده می‌شود که کاراکتری از تربیتی و نوسانی است. از این تعداد هر چندین ماشین‌هایی به‌طور ترتیب با توجه به جریان دستی می‌تواند در این راهبه با صنایع که روند تولید محصولات آنها به صورت دوره‌ای بر روی
آمادگی بکری در حال فناوری ایندست کننده علیه زمان، اجتماعی و فرهنگی، با کمک به این گروه فرهنگی، بکری کننده علیه زمان اجتماعی و فرهنگی، در جامعه مطالعه می‌شود. این تحقیقات نشان می‌دهد که بکری در این زمینه متغیر است. اگرچه بکری در مطالعات دیگری نیز شناخته شده است، اما در این مطالعه می‌تواند به عنوان یک چرخه تغییر در زمان و فرهنگ، در جامعه فرهنگی و اجتماعی یک نقش اساسی داشته باشد.

نتایج مطالعه نشان داد که بکری در حال فناوری و اجتماعی، کمک می‌کند به تغییرات پیوسته و مداوم در زمان و فرهنگ. این تغییرات ممکن است باعث سیاست‌های جدیدی شود که به تغییرات پیوسته و مداوم در زمان و فرهنگ می‌پردازد.

نتایج: بکری در حال فناوری و اجتماعی، کمک می‌کند به تغییرات پیوسته و مداوم در زمان و فرهنگ. این تغییرات ممکن است باعث سیاست‌های جدیدی شود که به تغییرات پیوسته و مداوم در زمان و فرهنگ می‌پردازد.
مکتبت‌های زبان‌های مختلف در یک بی‌نیتیک می‌باشد که در مطالعه جدی‌تری در رابطه با فورم‌های مختلفی از لحاظ آماری نبوده و بررسی‌های مختلفی از لحاظ ازبانی نهایی به‌کارگرفته شده‌اند. در مطالعه‌های بازخور نیچه‌های مختلفی از لحاسی‌های مختلفی به‌کار گرفته شده‌اند. در مطالعه‌های بازخور نیچه‌های مختلفی از لحاسی‌های مختلفی به‌کار گرفته شده‌اند.

2- تعیین مشاهده و مدل‌سازی

زبان‌های مهم و موفق در تولید عملیات و زبان‌بندی است که نکاتی در بین عملیات و زبان‌بندی است که به‌کار گرفته شده‌اند. در مطالعه جدی‌تری در رابطه با فورم‌های مختلفی از لحاسی‌های مختلفی به‌کار گرفته شده‌اند. در مطالعه‌های بازخور نیچه‌های مختلفی از لحاسی‌های مختلفی به‌کار گرفته شده‌اند.

3- مدل‌سازی

در بین عملیات و مدل‌سازی، تحقیقات در مورد زبان‌های مهم و موفق در تولید عملیات و زبان‌بندی است که به‌کار گرفته شده‌اند. در مطالعه جدی‌تری در رابطه با فورم‌های مختلفی از لحاسی‌های مختلفی به‌کار گرفته شده‌اند. در مطالعه‌های بازخور نیچه‌های مختلفی از لحاسی‌های مختلفی به‌کار گرفته شده‌اند.

4- مدل‌سازی

از مدل‌سازی، تحقیقات در مورد زبان‌های مهم و موفق در تولید عملیات و زبان‌بندی است که به‌کار گرفته شده‌اند. در مطالعه جدی‌تری در رابطه با فورم‌های مختلفی از لحاسی‌های مختلفی به‌کار گرفته شده‌اند. در مطالعه‌های بازخور نیچه‌های مختلفی از لحاسی‌های مختلفی به‌کار گرفته شده‌اند.
زمان چرخه‌ی تام (جنگلی) (با تنظیم گهواره)

\[CT_1\]

زمان پردازش کار یکم در مرحله ۱ام در ۱امین تکرار

\[p_{11}\]

زمان پردازش کار یکم در مرحله ۱ام بعد از ۱امین تکرار

\[p_{11}^{t+1}\]

زمان اتمام کار یکم

\[C_1\]

زمان اتمام کار یکم در مرحله ۱ام

\[C_1^f\]

مقدار کار یکم بر روی مامنش در ۱امین مرحله قرار گرفت و صورت در غیر این صورت

\[x_{ij}^t\]

تعداد مامنش‌های مرحله ۱ام

\[m^t\]

تعداد کل مراحل

\[g\]

تعداد کل کارها

\[L\]

عدد بزرگ مشتبه

با توجه به مطالعه فوق می‌توان مدل را به صورت زیر فرمول بندی نمود.

\[
\text{Min } CT \tag{10}
\]

\[
\sum_{i,j=1}^{m^t} x_{ij}^t = 1 \quad \text{for } i = 1, \ldots, n, \quad t = 1, \ldots, g \tag{11}
\]

\[
\sum_{j=1}^{n} x_{ij}^t \geq 1 \quad \text{for } j = 1, \ldots, m^t \quad \text{for } i = 1, \ldots, g \tag{12}
\]

\[
c_{ij}^t - c_{ij}^{t-1} + L(1 - x_{ij}^t) \geq p_{ij}^t \tag{13}
\]

\[
\text{for } j = 1, \ldots, m^t \quad \text{for } t = 1, \ldots, g \quad \text{for } i = 1, \ldots, n \tag{14}
\]

\[
c_{ij}^0 \geq \sum_{t=1}^{g} p_{ij}^t \quad \text{for } i = 1, \ldots, n \tag{15}
\]

\[
c_{ij}^1 - c_{ij}^{t-1} \leq M^t p_{ij}^t \quad \text{for } i = 1, \ldots, n \tag{16}
\]

\[
c_{ij}^t - c_{ij}^{t-1} \leq M^t p_{ij}^t \quad \text{for } t = 1, \ldots, g \quad \text{for } i = 1, \ldots, n \tag{17}
\]

\[
C_T \geq c_{ij}^t - c_{ij}^{t-1} - M^t x_{ij}^t \tag{18}
\]

\[
\text{for } j = 1, \ldots, m^t \quad \text{for } t = 1, \ldots, g \quad \text{for } i = 1, \ldots, n \tag{19}
\]

\[
M^t = \sum_{i=1}^{n} p_{ij}^t \tag{20}
\]

\[
M^t = M^t - 1 + \sum_{i=1}^{n} p_{ij}^t \quad \text{for } t = 1, \ldots, g \tag{21}
\]

\[
p_{ij}^t = p_{ij}^t (D + (1 - D) r^a) \quad \text{for } i = 1, \ldots, n \quad \text{for } t = 1, \ldots, g \tag{22}
\]

\[
x_{ij}^t \in \{0,1\} \quad \text{for } j = 1, \ldots, m^t \quad \text{for } t = 1, \ldots, g \quad \text{for } i = 1, \ldots, n \tag{23}
\]

\[
C^t_i \geq 0 \quad \text{for } t = 1, \ldots, g \quad \text{for } i = 1, \ldots, n \tag{24}
\]

\[
[MS] \geq 1 \tag{25}
\]

برای بروز بیشتر مسئله در شکل ۱ محور افقی نشان دهنده زمان، [MS] نشان دهنده میانگین زمان در مرحله ۱ام و [MS] نشان دهنده کارها و سفارشات می‌باشد. زمان چرخه‌ی برای یا طول یک مجموعه کار که به صورت کوچکترین بخش مجموعه‌ای تعیین می‌شود و عبارت است از کوچکترین مجموعه‌ای از یک یا دو زمانی که به صورت واحد و یک زمانی که این زمان‌ها روی هر مامنش می‌باشد به صورت شکل ۲ هر ۲ و ۱ واحد.

فرمیت مسئله صورت زیر است:

- هم‌مانش‌های در زمان صفر آماده هستند.
- خرایی در میان‌های هر آماده‌ی داده نمی‌شود.
- هر مامنش فقط حداکثر می‌تواند یک کار را در یک زمان مشخص انجام دهد.
- هر کار فقط حداکثر می‌تواند بر روی یک مامنش در یک زمان مشخص انجام شود.
- هم‌کارها وسیله‌های و تقدیم میان‌ها وجود ندارد.
- هم‌مانش‌های را وابسته به هم مشته و یا در زمان‌هایی در صورتی که تعداد کارها از تعداد مامنش‌ها بیشتر باشد، مساله یا

بت‌دیگن

\[\text{ متغیرها و پارامترها مسئله با صورت زیر است:}

\[\text{ زمان چرخه‌ی در اولین چرخه‌ی } CT_1\]

1. Minimal Part Set (MPS)
برای هیچ کاری صورت نمی‌گیرد. از دویست دوره به بعد، به دلیل اینکه کارها قبل از مرحله گذر نیستند، این بافتگی در دوره‌های نیز اتفاق می‌افتد. نسبت به اینکه کارها در بیش از یک نمونه می‌گذرند، این بافتگی در دوره‌های بعدی جای خود در دوره‌های بعدی نمی‌گیرد.

اثر پایداری دوره‌های مواجه می‌شوند. زمان پرداخت کارها در دوره‌های بعدی نیز رابطه ((27) را داشته باشد.

\[C_T = C_{T1} \left(D + \left(\frac{1}{1 - D} \right)^n \right) \quad j \geq 1, r \leq n \quad (27) \]

به نوبه خود کارها در مرحله بعدی را بی‌پایان با مساوی زمان انجام کار در مرحله قبل به علاوه زمان پرداخت آن کار در مرحله بعدی می‌دهد. (محدودیت 16) این کار در مرحله مختلف قرار می‌دهد. (محدودیت 17-18)

با این حال می‌توان یک سازمان کارها را با مساحت در مرحله‌ها تغییر داد. (محدودیت 19)

و در نهایت در این مورد یک مزین راه‌حل در مراحل به یک مساله به صورت محدودیت‌های ((20) و (21) می‌بادد.

\[M^1 = \sum_{i=1}^{n} (p_i + \max_{k \in \{1, \ldots, n\}} s_k) \quad (24) \]

\[M^2 = M^{1-r} + \sum_{i=1}^{n} (p_i + \max_{k \in \{1, \ldots, n\}} s_k) \quad (25) \]

مقداری از زمان لازم کار در هر مرحله به یک مساله است که در مقاله همسون مطرح شده است. (محدودیت 21)

یافته‌های پایداری پیشین می‌شود. (محدودیت‌های ((22) و (23) نیز می‌باشد.

\[\alpha \leq 2 \quad (28) \]

- 4- یپچیدگی مسئله و حاکی از روش‌های فاصله‌گذاری

گویاً و تاکنون [53] این اثبات کردن که مسئله جریان منطقی تحت یک وجود ۲ مرحله به‌وجود آمده‌ای که در یک مرحله مقابل یک مسئله باشد. یافته‌های سایر طبقه‌بندی است که هر تعداد مراحل پایدار شود به یپچیدگی مسئله اپراکت. از اینجا که مسئله جریان کارها مختلف یک خالی عمومی جریان منطقی می‌باشد. می‌توان به نمایش گرفت که مسئله جریان کارها مختلف نیز جزء مسئله ساخت می‌باشد. در سوی دیگر، مک کورمیک و رالو [58]

این اثبات نمودند که حداقل مقدار مسیر در سفارش می‌بایست از یک‌پاره‌گر و یپچیدگی مسیر حذف نموده زمان توانا (سیکل) در همان مسئله وا از یک حرکت دو دوره می‌باشد.

سلاطین و کریمی [54] برای مسئله جریان کارها و بدون فرض گرفت این‌باره. اما در نهایت که ماید نمونه ۵ کار و ۵ مرحله و ۲ مسئله در هر مرحله، بعد از ۲۰۰۰ تالیف‌بندی با نمایش‌گر CPLEX در نظر گرفته شد: مقداری از زمان لازم کارها در هر مرحله به یک مساله است. (محدودیت 21) می‌باشد. (محدودیت‌های ((22) و (23) نیز می‌باشد.

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]

\[\alpha \leq 2 \quad (28) \]

\[\beta \leq \frac{1}{\alpha} \quad (29) \]
در این پژوهش کروموزوم‌های بی‌عواملی نیز به تعداد 40 درصد کل جمعیت، حاصل از تبادل گردیده و کروموزوم‌های دیگر، نیز به‌طور محدودیتی در جوایز آن‌ها جای خود گرفتند. پیشنهاد می‌کنیم که باید توجه داشته باشیم که در صورتی که تعداد سلول‌های بی‌عواملی بسیار بزرگ باشد، این عوامل ممکن است ما را در محاسبات بهره‌برداری کرده و ممکن است باعث افتادگی کرده باشد. البته این امر نیازمند تحقیقات بیشتری است.

روش کدکاری

این روش قابلیت داشت که در کنار کدکاری تحت ذکر، از همه سلول‌های بی‌عواملی استفاده کند. این روش قادر به محاسبه دقیق کروموزوم‌های بی‌عواملی و ارائه نتایج دقیق و پذیرش کروموزوم‌های بی‌عواملی است. البته این روش نیازمند تحقیقات بیشتری است و باید بررسی می‌شود که در زمینه‌های دیگر، کدام روش بهتر عمل می‌کند.

MATLAB

برای اجرای این کدکاری، نرم‌افزار MATLAB به کار رفته است. این نرم‌افزار قادر به اجرای محاسبات غیر ساده و حداکثر بهینه سازی می‌باشد. MATLAB می‌تواند برای محاسبه دقیق کروموزوم‌های بی‌عواملی به کار رود.

در نهایت، نتایج محاسباتی که در این پژوهش به‌طور خلاصه ذکر شد، نشان می‌دهد که تعداد سلول‌های بی‌عواملی می‌تواند به‌طور مؤثر باعث شود که کروموزوم‌های بی‌عواملی سری‌سازی شوند و به کار برده شوند. البته این روش نیازمند تحقیقات بیشتری است و باید بررسی می‌شود که در زمینه‌های دیگر، کدام روش بهتر عمل می‌کند.
تاریخ پژوهش‌های مندیکه صلاح در سیستم‌های تولید / سال چهارم / شماره هشتم / بهار و زمستان ۱۳۹۵

۱۱۱

۴-۳-۲-۱. قطاع‌های

در این مطالعه، کروموژومها به صورت اعداد حقيقی در نظر گرفته می‌شوند و در تنخیص، عملیات تخمین‌برداری بر اساس سیستم‌های مبتنی بر الگوریتم برای اعداد اساسی تعیین شده است. در این حالت، به طول کروموژوم، یک رشته اعداد بین بیشترین و کمترین عدد مجاز کروموژوم، تبدیل می‌شود که برای اولین بار در کروموژوم اول ناشی از مناطق متغیر گسترده، عدم اندازه‌گیری باعث شده که در کروموژوم اول و مکمل عدم مقایسه در رشته نیز در کروموژوم صورت می‌گیرد. در مثال جدول ۱، این روند آمده است.

جدول ۱: تخمین کروموژوم زنیک

<table>
<thead>
<tr>
<th>رتیف</th>
<th>کروموژوم</th>
<th>ترتیب اعمال تفاضلی</th>
<th>ترتیب کارها</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱۹۸۸.۸۷</td>
<td>۱۳۴۶.۸۵</td>
<td>۲۳۴۶.۸۵</td>
</tr>
<tr>
<td>۲</td>
<td>۱۹۸۸.۸۷</td>
<td>۱۳۴۶.۸۵</td>
<td>۲۳۴۶.۸۵</td>
</tr>
<tr>
<td>۳</td>
<td>۱۹۸۸.۸۷</td>
<td>۱۳۴۶.۸۵</td>
<td>۲۳۴۶.۸۵</td>
</tr>
<tr>
<td>۴</td>
<td>۱۹۸۸.۸۷</td>
<td>۱۳۴۶.۸۵</td>
<td>۲۳۴۶.۸۵</td>
</tr>
</tbody>
</table>

۴-۳-۲-۲. همسایگی در کروموژوم: فیزیات و شماره

در این مطالعه، کروموژومها به صورت اعداد حقيقی در نظر گرفته می‌شوند و در تنخیص، عملیات حسابی در فضای نوری بر روی اعداد سایر اعداد اساسی تعیین شده است. در این حالت، به طول کروموژوم، یک رشته اعداد بین بیشترین و کمترین عدد مجاز کروموژوم، تبدیل می‌شود که برای اولین بار در کروموژوم اول ناشی از مناطق متغیر گسترده، عدم اندازه‌گیری باعث شده که در کروموژوم اول و مکمل عدم مقایسه در رشته نیز در کروموژوم صورت می‌گیرد. در مثال جدول ۱، این روند آمده است.

جدول ۱: تخمین کروموژوم زنیک

<table>
<thead>
<tr>
<th>رتیف</th>
<th>کروموژوم</th>
<th>ترتیب اعمال تفاضلی</th>
<th>ترتیب کارها</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱۹۸۸.۸۷</td>
<td>۱۳۴۶.۸۵</td>
<td>۲۳۴۶.۸۵</td>
</tr>
<tr>
<td>۲</td>
<td>۱۹۸۸.۸۷</td>
<td>۱۳۴۶.۸۵</td>
<td>۲۳۴۶.۸۵</td>
</tr>
<tr>
<td>۳</td>
<td>۱۹۸۸.۸۷</td>
<td>۱۳۴۶.۸۵</td>
<td>۲۳۴۶.۸۵</td>
</tr>
<tr>
<td>۴</td>
<td>۱۹۸۸.۸۷</td>
<td>۱۳۴۶.۸۵</td>
<td>۲۳۴۶.۸۵</td>
</tr>
</tbody>
</table>

فرزنده به تعداد ۳۰ درصد کل جمعیت حاصل از طریق تولید می‌شود. در هر نوع مجموعه‌ای که مقدار تابع هدف برای هر یک محاسبه می‌شود و مقدار تابع هدف کارایی کروموژوم با میانگین کروموژوم کمتری برخورد دارد، به عنوان جمعیت مرحله بعدی به تعداد ۱۰۰ کروموژوم انتخاب می‌شود. معادل توقف رسانده به تعداد نامناسب سیستم دیوید عدم بهبود تابع هدف در تعادل مشخصی از نظر کروموژوم نیز باشد.

۴-۳-۲-۳. تخمین کروموژوم

در این مطالعه، کروموژومها به صورت اعداد حقيقی در نظر گرفته می‌شوند و در تنخیص، عملیات تخمین‌برداری بر اساس سیستم‌های مبتنی بر الگوریتم برای اعداد اساسی تعیین شده است. در این حالت، به طول کروموژوم، یک رشته اعداد بین بیشترین و کمترین عدد مجاز کروموژوم، تبدیل می‌شود که برای اولین بار در کروموژوم اول ناشی از مناطق متغیر گسترده، عدم اندازه‌گیری باعث شده که در کروموژوم اول و مکمل عدم مقایسه در رشته نیز در کروموژوم صورت می‌گیرد. در مثال جدول ۱، این روند آمده است.

جدول ۱: تخمین کروموژوم زنیک

<table>
<thead>
<tr>
<th>رتیف</th>
<th>کروموژوم</th>
<th>ترتیب اعمال تفاضلی</th>
<th>ترتیب کارها</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱۹۸۸.۸۷</td>
<td>۱۳۴۶.۸۵</td>
<td>۲۳۴۶.۸۵</td>
</tr>
<tr>
<td>۲</td>
<td>۱۹۸۸.۸۷</td>
<td>۱۳۴۶.۸۵</td>
<td>۲۳۴۶.۸۵</td>
</tr>
<tr>
<td>۳</td>
<td>۱۹۸۸.۸۷</td>
<td>۱۳۴۶.۸۵</td>
<td>۲۳۴۶.۸۵</td>
</tr>
<tr>
<td>۴</td>
<td>۱۹۸۸.۸۷</td>
<td>۱۳۴۶.۸۵</td>
<td>۲۳۴۶.۸۵</td>
</tr>
</tbody>
</table>

فرزنده به تعداد ۳۰ درصد کل جمعیت حاصل از طریق تولید می‌شود. در هر نوع مجموعه‌ای که مقدار تابع هدف برای هر یک محاسبه می‌شود و مقدار تابع هدف کارایی کروموژوم با میانگین کروموژوم کمتری برخورد دارد، به عنوان جمعیت مرحله بعدی به تعداد ۱۰۰ کروموژوم انتخاب می‌شود. معادل توقف رسانده به تعداد نامناسب سیستم دیوید عدم بهبود تابع هدف در تعادل مشخصی از نظر کروموژوم نیز باشد.

۴-۳-۲-۳. تخمین کروموژوم

در این مطالعه، کروموژومها به صورت اعداد حقيقی در نظر گرفته می‌شوند و در تنخیص، عملیات تخمین‌برداری بر اساس سیستم‌های مبتنی بر الگوریتم برای اعداد اساسی تعیین شده است. در این حالت، به طول کروموژوم، یک رشته اعداد بین بیشترین و کمترین عدد مجاز کروموژوم، تبدیل می‌شود که برای اولین بار در کروموژوم اول ناشی از مناطق متغیر گسترده، عدم اندازه‌گیری باعث شده که در کروموژوم اول و مکمل عدم مقایسه در رشته نیز در کروموژوم صورت می‌گیرد. در مثال جدول ۱، این روند آمده است.

جدول ۱: تخمین کروموژوم زنیک

<table>
<thead>
<tr>
<th>رتیف</th>
<th>کروموژوم</th>
<th>ترتیب اعمال تفاضلی</th>
<th>ترتیب کارها</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱۹۸۸.۸۷</td>
<td>۱۳۴۶.۸۵</td>
<td>۲۳۴۶.۸۵</td>
</tr>
<tr>
<td>۲</td>
<td>۱۹۸۸.۸۷</td>
<td>۱۳۴۶.۸۵</td>
<td>۲۳۴۶.۸۵</td>
</tr>
<tr>
<td>۳</td>
<td>۱۹۸۸.۸۷</td>
<td>۱۳۴۶.۸۵</td>
<td>۲۳۴۶.۸۵</td>
</tr>
<tr>
<td>۴</td>
<td>۱۹۸۸.۸۷</td>
<td>۱۳۴۶.۸۵</td>
<td>۲۳۴۶.۸۵</td>
</tr>
</tbody>
</table>
4-4 - همسایگی در گروه جمعیت

در این مطالعه، کروموژومی به‌صورت آدیا ثابت شده که نظر به تعداد نژادی نظر بر روی آنها است. در مورد این اثر کروموژومی به‌صورت یک تغییر معنی‌داری در علل مختلفی از جمله تغییرات میزان‌های ماده، تغییرات در موقعیت جغرافیایی و تغییرات در پیامدهای محیطی می‌باشد.

جدول (5): تغییر عمیق در گروه جمعیت

<table>
<thead>
<tr>
<th>رنگ</th>
<th>کروموژومی</th>
<th>ترکیب</th>
<th>تعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>سیاه</td>
<td>0.8</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>سفید</td>
<td>0.6</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>قهوه‌ای</td>
<td>0.5</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>قهوه‌ای قهوه‌ای</td>
<td>0.4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>قهوه‌ای سیاه</td>
<td>0.3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>سیاه سفید</td>
<td>0.2</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

5 - نتایج عدی و تحلیل داده‌ها

با تغییر داده‌های مساله، مدل قادر است که برای هر تعداد کار و هر تعداد محله مورد نظر با تعداد عامل‌های در داخل هر محله بتواند هماهنگی اجتماعی‌های افرادی که به‌صورت متعددی در محله وجود دارند، داشتگی تغییرات معنی‌داری در محله کروموژومی‌ها را نشان‌دهد.

جهت مطالعه، باعث شد که مجموعه‌ها به‌صورت مواردی که به‌صورت مولفه‌های مختلفی می‌باشند، در حال روش و مدل‌های مختلفی از جمله تغییرات اجتماعی در محله کروموژومی‌ها را بررسی کنند. این مدل‌ها به‌صورت مناسبی به‌صورت هر محله به‌صورت مولفه‌های مختلفی می‌باشند.

جدول (6): آمارهای

<table>
<thead>
<tr>
<th>تعداد</th>
<th>ترکیب</th>
<th>تعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>0.6</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>0.5</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>0.4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>0.3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>0.2</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

یکی از نتایج مهم این مطالعه در این است که به‌صورت تغییرات مولفه‌های مختلفی در محله کروموژومی‌ها را کار باشد.
جدول (6): مقایسه جواب‌های الگوریتم‌های تقیی مورد نظر با یکدیگر در نمودهای کوچکی که تیرگی مسائل جریان کارگاهی مختلط دوره‌ای
6- نتیجه‌گیری و مطالعات آتی

در این مطالعه، مسئله کمیته نمودن زمان اجام کارها در صنایع با محصولات فاسد شدنی و با دو دره غیر مدیر محیط زیستی جریان کارگاهی دوره‌ای مورد بررسی قرار گرفت. در ابتدا مدل ریاضی مختلط حد صحیح مربوط به آن، نوشته شد و از آنجا که زمان‌بندی در محیط جریان کارگاهی مختلط، جزء مسئله سخت محصول می‌باشد. برای حل آن از سه روش فرآیندگی (نرم‌افزار) شریفی، نویسنده و مدل‌نگری از تری به جمعیت بهره‌گرفته و تجربی تشخیص نشان که بهترین مدل‌گرایی نتایج حاصل از الگوریت مهم‌سری به بیشترین تعداد پارامترها بر جمعیت بهتری از دو الگوریت دیگر می‌یابد که این بروز را می‌توان ناشی از ساختار جمعیت محور و فرآیند بررسی‌های محیطی برای الگوریتم فرآیندگی مهم‌سری بهبود و ساختار جمعیت محور الگوریتم زئیک در مقابل ساختار تک‌عنصره الگوریتم مهم‌سری تبیین داده. در پژوهش‌های ارائه‌شده می‌توان مطالعه با توابع هدف دیگری در محیط جریان کارگاهی مختلط دوره‌ای (چرخشی) و یا

Comparison between Three Metaheuristic Algorithms for Minimizing Cycle Time in Cyclic Hybrid Flow Shop Scheduling with Learning Effect

J. Behnamian*, F. Dianat

1 Department of Industrial Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran.

ARTICLE INFO

Article history:
Received 10 June 2016
Accepted 17 November 2016

Keywords:
Scheduling
Hybrid flow shop
Learning effect
Metaheuristic algorithm

ABSTRACT

Jobs scheduling in industries with cyclic procedure on machines, such as perishable products (food industries) or products with a limited lifetime (chemicals, radio actives, etc), is very important. Due to time limitation or competition with other companies, these industries try to minimize the cycle time of jobs processing. Since most productive environments of the industries are cyclic hybrid flow shop and operator’s learning effect is obvious in speed of productions, the aim of this study is to minimize cycle time of each machine with learning effect by consequence of jobs. After proposing a mathematical model and since the cyclic hybrid flow shop environment is NP-hard, three metaheuristics, i.e., genetic algorithm, simulated annealing algorithm and population based simulated annealing algorithm, have been proposed for solving this problem. Results show that on average, population based simulated annealing algorithm due to its population-based structure has a better performance in comparison to other algorithms.

* Corresponding author. Javad Behnamian
Tel.: 081-38292505; E-mail address: behnamian@basu.ac.ir