زمان‌بندی تولید سلولی با درنظر گرفتن عوامل انسانی و زمان تحویل سفارشات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی‌ارشد مهندسی صنایع، دانشکدۀ فنی و مهندسی، دانشگاه اصفهان، اصفهان، ایران

2 استادیار گروه مهندسی صنایع و آینده پژوهی، دانشکدۀ فنی و مهندسی، دانشگاه اصفهان، اصفهان، ایران

چکیده

مهندسی عوامل انسانی یک زمینه علمی مرتبط با فهم تعامل بین انسان و سایر عناصر یک سیستم در جهت آسایش و رفاه اپراتور و عملکرد کامل سیستم می­باشد. هدف اصلی این پژوهش، زمان­بندی تولید سفارش­ها و شیفت­بندی اپراتور­ها در محیط تولید سلولی با درنظر گرفتن عوامل انسانی و با اهداف کمینه کردن دیرکرد تحویل محصولات و میانگین خستگی اپراتورها می­باشد. در این پژوهش فاکتورهای انسانی خستگی، یادگیری و فراموشی در زمان­بندی محیط­های تولیدی درنظر گرفته شده است و یک مدل برنامه­ریزی ریاضی عدد صحیح به­همراه الگوریتم ابتکاری افق غلطان برای حل مسأله ارائه می­شود. به­منظور اجرای آزمایشات عددی، 3 گروه مسائل نمونه به­صورت تصادفی تولید شد. الگوریتم افق غلطان در دو حالت همپوشانی و بدون همپوشانی روی مسائل نمونه اجرا شد و نتایج نشان داد که این الگوریتم در حالت بدون همپوشانی با طول ۲ دوره ازنظر زمان حل و اختلاف با جواب بهینه، مناسب­ترین حالت است. الگوریتم ابتکاری افق غلطان قادر است مسائل در ابعاد بزرگ را با خطای حداکثر 3% از جواب حل دقیق برای هریک از اهداف در زمان 5/5 دقیقه به­دست آورد درحالی­که زمان حل مدل برنامه­ریزی عدد صحیح در این ابعاد از مسائل حدود 2 ساعت است. نتایج خطی­سازی مدل نشان داد که تبدیل متغیر پیوسته به عدد صحیح نسبت به روش مک­کورمیک کارایی بهتری دارد و تحلیل حساسیت روی پارامترهای مسأله نشان می­دهد که ضریب خستگی دارای رابطه مستقیم با میزان دیرکرد سفارشات بوده و ضریب یادگیری دارای رابطه معکوس با دیرکرد سفارشات و میانگین خستگی اپراتورها می­باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Scheduling Cellular Manufacturing Systems Based on Human Factors and Due Date of Orders

نویسندگان [English]

  • Fatemeh Saedi 1
  • Kamran Kianfar 2
1 Master of Industrial Engineering, Faculty of Technical and Engineering University of Isfahan, Isfahan, Iran
2 Assistant Professor, Department of Industrial Engineering and Future Research, Faculty of Engineering, University of Isfahan, Isfahan, Iran
چکیده [English]

Human factors engineering is a scientific area about collaboration between persons and other parameters of a system. It consists of theorems, principles and methods for designing based on the relief of operators and system performance. The main purpose of this paper is scheduling the orders and operators in a CMS regarding the human factors to minimize the orders’ tardiness and fatigue of operators. The fatigue, recovery, learning and forgetting are the human factors in this study, which affect the job rotation and shift scheduling. A mathematical model and a rolling horizon heuristic are developed as well as three groups of test problems each including five random problem instances. The rolling horizon algorithm was tested on the test problems and the results showed that non-overlapping mode with a length of 2 periods is the best choice. The heuristic algorithm solves large-scale instances with less than 3% optimality gaps in about 5.5 minutes while the MIP model needs about 2 hours. The results of linearization of the model showed that the conversion of the continuous variables into integer numbers is more efficient than the McCormick method. Sensitivity analysis shows that fatigue factor has a direct relation with tardiness and learning and also, the learning factor has a reverse relation with the both objectives of tardiness and mean fatigue.

کلیدواژه‌ها [English]

  • Job Rotation
  • CMS Scheduling
  • Fatigue-Recovery
  • Learning-Forgetting
  • Tardiness
  • Rolling Horizon Algorithm
  • خسروی، شیما و غضنفری، فاطمه (1394) بررسی رابطه گردش شغلی با رضایت‌مندی از کار و فرسودگی شغلی در کارکنان دانشگاه علوم پزشکی تهران. مجله پیاورد سلامت، 1394. 9(6): صفحه 517-526.
  • Lang, W., et al., Minimizing makespan of stochastic customer orders in cellular manufacturing systems with parallel machines. Computers & Operations Research, 2021. 125: p. 105101.
  • Botti, L., C. Mora, and M. Calzavara, Design of job rotation schedules managing the exposure to age-related risk factors. IFAC-PapersOnLine, 2017. 50(1): p. 13993-139.
  • اکبری، محمد (2017) مدل‌سازی ریاضی عوامل انسانی در سیستم با محدودیت دوگانه. پژوهش‌های نوین در تصمیم‌گیری. 2(2): صفحه 23-49.
  • Bakhshi, M., S.E. Hashemi, and H. Dezhdar, Applying mathematical modeling to create job rotation for improve workforce performance in semi-automatic systems. International journal of research in industrial engineering, 2020. 9(4): p. 318-327.
  • Liu, Y., et al., Agent-based simulation and optimization of hybrid flow shop considering multi-skilled workers and fatigue factors. Robotics and Computer-Integrated Manufacturing, 2023. 80: p. 102478.
  • Heuser, P. and B. Tauer, Single-machine scheduling with product category-based learning and forgetting effects. Omega, 2023. 115: p. 102786.
  • Zhang, X., et al., Integrated optimization on production scheduling and imperfect preventive maintenance considering multi-degradation and learning-forgetting effects. Flexible Services and Manufacturing Journal, 2022. 34(2): p. 451-482.
  • Lou, H., et al., Memetic algorithm based on learning and decomposition for multiobjective flexible job shop scheduling considering human factors. Swarm and Evolutionary Computation, 2022. 75: p. 101204.
  • Asadayoobi, N., M.Y. Jaber, and S. Taghipour, A new learning curve with fatigue-dependent learning rate. Applied Mathematical Modelling, 2021. 93: p. 644-656.
  • Zare Mehrjerdi, Y., A.A. Ghasemi Gajvan, and M. Shahmohammadi, A Bi-criterion hybrid flow shop time scheduling: Balancing the performance and total completion times. International Journal of Industrial Engineering & Production Management, 2014. 24(4): p. 475-488.
  • Jaber, M.Y., Z.S. Givi, and W.P. Neumann, Incorporating human fatigue and recovery into the learning–forgetting process. Applied Mathematical Modelling, 2013. 37(12): p. 7287-7299.
  • Zhou, S., et al., Minimizing makespan on parallel batch processing machines with two-dimensional rectangular jobs. Computers & Industrial Engineering, 2022. 169: p. 108167.
  • Azizi, N., Zolfaghari, and M. Liang, Modeling job rotation in manufacturing systems: The study of employee's boredom and skill variations. International Journal of Production Economics, 2010. 123(1): p. 69-85.
  • Aljuneidi, T. and A.A. Bulgak, Designing a Cellular Manufacturing System featuring remanufacturing, recycling, and disposal options: A mathematical modeling approach. CIRP Journal of Manufacturing Science and Technology, 2017. 19: p. 25-35.
  • Otto, A. and A. Scholl, Reducing ergonomic risks by job rotation scheduling. OR Spectrum, 2013. 35(3): p. 711-733.
  • Jorgensen, M., et al., Characteristics of job rotation in the Midwest US manufacturing sector. Ergonomics, 2006. 48: p. 1721-33.
  • Mohammadi, M. and K. Forghani, Designing cellular manufacturing systems considering S-shaped layout. Computers & Industrial Engineering, 2016. 98: p. 221-236.
  • Diego-Mas, J.A., et al., A multi-criteria genetic algorithm for the generation of job rotation schedules. International Journal of Industrial Ergonomics, 2009. 39(1): 23-33.
  • Moreira, M.C.O., et al., The multi-objective assembly line worker integration and balancing problem of type-2. Comput. Oper. Res., 2017. 82: p. 114-125.
  • Lodree, E.J., C.D. Geiger, and X. Jiang, Taxonomy for integrating scheduling theory and human factors: Review and research opportunities. International Journal of Industrial Ergonomics, 2009. 39(1): p. 39-51.
  • Cesaní, V.I. and H.J. Steudel, A study of labor assignment flexibility in cellular manufacturing systems. Computers & Industrial Engineering, 2005. 48(3): p. 571-591.
  • de Oliveira Sato, T. and H.J. Cote Gil Coury, Evaluation of musculoskeletal health outcomes in the context of job rotation and multifunctional jobs. Applied Ergonomics, 2009. 40(4): p. 707-712.
  • Hochdörffer, J., M. Hedler, and G. Lanza, Staff scheduling in job rotation environments considering ergonomic aspects and preservation of qualifications. Journal of Manufacturing Systems, 2018. 46: p. 103-114.
  • Allahyari, M.Z. and A. Azab, A Novel Bi-level Continuous Formulation for the Cellular Manufacturing System Facility Layout Problem. Procedia CIRP, 2015. 33: p. 87-92.
  • Moussavi, S.E., M. Mahdjoub, and O. Grunder, A multi-objective programming approach to develop an ergonomic job rotation in a manufacturing system. IFAC-PapersOnLine, 2018. 51(11): p. 850-855.
  • Boenzi, F., et al., Ergonomic improvement through job rotations in repetitive manual tasks in case of limited specialization and differentiated ergonomic requirements. IFAC-PapersOnLine, 2016. 49(12): p. 1667-1672.
  • Alimian, M., V. Ghezavati, and R. Tavakkoli-Moghaddam, New integration of preventive maintenance and production planning with cell formation and group scheduling for dynamic cellular manufacturing systems. Journal of Manufacturing Systems, 2020. 56: p. 341-358.
  • Mahdavi, I., et al., Designing a mathematical model for dynamic cellular manufacturing systems considering production planning and worker assignment. Computers & Mathematics with Applications, 2010. 60(4): p. 1014-1025.
  • Akpinar, Ş. and A. Baykasoglu, Modeling and solving mixed-model assembly line balancing problem with setups. Part I: A mixed integer linear programming model. Journal of Manufacturing Systems, 2013. 33.
  • Costa, A., V. Fernandez-Viagas, and J.M. Framinan, Solving the hybrid flow shop scheduling problem with limited human resource constraint. Computers & Industrial Engineering, 2020. 146: p. 106545.
  • Mossa, G., et al., Productivity and ergonomic risk in human based production systems: A job-rotation scheduling model. International Journal of Production Economics, 2016. 171: p. 471-477.
  • Boenzi, F., et al., Modelling Workforce Aging in Job Rotation Problems. IFAC-PapersOnLine, 2015. 48(3): p. 604-609.
  • Luger, T., et al., Is rotating between static and dynamic work beneficial for our fatigue state? Journal of Electromyography and Kinesiology, 2016. 28: p. 104-113.
  • Basavaraj, P., The effect of job rotation and single-piece flow in human based assembly system. 2020, Texas State University, San Marcos, Texas: Theses and Dissertations-Ingram School of Engineering.
  • Ayough, A., M. Hosseinzadeh, and A. Motameni, Job rotation scheduling in the Seru system: shake enforced invasive weed optimization approach. Assembly Automation, 2020. 40(3): p. 461-474.
  • Kaymaz, K., The Effects of Job Rotation Practices on Motivation: A Research on Managers in the Automotive Organizations. Business and Economics Research Journal, 2010. 1: p. 69-69.
  • Michalos, G., et al., Dynamic job rotation for workload balancing in human based assembly systems. CIRP Journal of Manufacturing Science and Technology, 2010. 2(3): p. 153-160.
  • Digiesi, S., et al., Minimizing and balancing ergonomic risk of workers of an assembly line by job rotation: a MINLP model. International Journal of Industrial Engineering and Management, 2018. 9(3): p. 129-138.
  • Adem, A. and M. Dağdeviren, A job rotation-scheduling model for blue-collar employees' hand–arm vibration levels in manufacturing firms. Human Factors and Ergonomics in Manufacturing & Service Industries, 2021. 31(2): p. 174-190.
  • Anuar, N., et al., Improved multi-objective particle swarm optimization for job-shop scheduling problems. Journal of Advanced Manufacturing Technology, 2020. 14(3): p. 33-49.
  • Battini, D., et al., Towards industry 5.0: A multi-objective job rotation model for an inclusive workforce. International Journal of Production Economics, 2022. 250: p. 108619.
  • Zhang, Z., Modeling complexity of cellular manufacturing systems. Applied Mathematical Modelling, 2011. 35(9): p. 4189-4195.
  • Hooker, J.N., Integrated Methods for Optimization. 2 ed. 2012: Springer New York, NY.
  • Jaber, M.Y. and W.P. Neumann, Modelling worker fatigue and recovery in dual-resource constrained systems. Computers & Industrial Engineering, 2010. 59(1): p. 75-84.